Effect of Silver Nanoparticles on the Thermal Properties of Sodium Acetate Trihydrate

被引:0
作者
B. Garay-Ramírez
A. Cruz-Orea
E. San Martín-Martínez
机构
[1] CICATA-IPN,Physics Department
[2] CINVESTAV-IPN,undefined
来源
International Journal of Thermophysics | 2015年 / 36卷
关键词
Latent heat recovery; Polymer blend; Response surface methodology; Silver nanoparticles; Sodium acetate trihydrate (SAT); Thermal conductivity; Thermal diffusivity; Thermal effusivity;
D O I
暂无
中图分类号
学科分类号
摘要
Sodium acetate trihydrate (SAT) is used as a phase change material (PCM) because of its high latent heat of fusion. Mixtures were prepared with SAT, a blend of the polymer sodium carboxymethil cellulose (CMC) and silica gel, silver nanoparticles (AgNPs), and anhydrous sodium sulfate to form a composite-PCM (c-PCM) based on SAT; the relative proportions of CMC/silica gel in the blend and AgNP content were varied according to a central composite experimental design. The thermal properties were determined for raw SAT, CMC, Na2SO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Na}_{2}\hbox {SO}_{4}$$\end{document}, and c-PCM samples. The thermal effusivity (es)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(e_\mathrm{s})$$\end{document} of samples was evaluated by the inverse photopyroelectric technique. The thermal diffusivity (Ds)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(D_\mathrm{s})$$\end{document} was obtained for samples by the open photoacoustic cell technique. The thermal conductivity (ks)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k_\mathrm{s})$$\end{document} was calculated from the obtained es\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_\mathrm{s}$$\end{document} and Ds\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_\mathrm{s}$$\end{document} values. To assess the thermal performance of the c-PCM compared to raw SAT, samples were studied through differential scanning calorimetry which served to determine the latent heat recovery (LHR). Properties es,Ds,ks\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_\mathrm{s}, D_\mathrm{s}, k_\mathrm{s}$$\end{document}, and LHR were analyzed by response surface methodology and compared. The SAT-based c-PCM was found to be more thermally conductive than raw SAT. The best LHR with good thermal diffusivity and thermal conductivity was identified in the region of the central composite experimental design with medium–low AgNPs and higher proportions of CMC in the polymer blend.
引用
收藏
页码:1164 / 1172
页数:8
相关论文
共 58 条
[1]  
Hu P(2011)undefined Sol. Energy Mater. Sol. Cells 95 2645-undefined
[2]  
Lu D-J(2013)undefined Appl. Therm. Eng. 62 838-undefined
[3]  
Fan X-Y(1992)undefined Sol. Energy Mater. Sol. Cells 27 161-undefined
[4]  
Zhou X(1995)undefined Korean J. Chem. Eng. 12 258-undefined
[5]  
Chen Z-S(2003)undefined Appl. Therm. Eng. 23 1697-undefined
[6]  
Garay Ramirez BML(2007)undefined J. Therm. Anal. Calorim. 87 371-undefined
[7]  
Glorieux C(1985)undefined J. Appl. Phys. 57 4421-undefined
[8]  
San Martin Martinez E(1998)undefined Rev. Sci. Instrum. 69 2452-undefined
[9]  
Flores Cuautle JJA(2012)undefined Int. J. Thermophys. 33 1916-undefined
[10]  
Ryu HW(1976)undefined J. Appl. Phys. 47 64-undefined