On the periodic zeta-function. II

被引:0
作者
Laurinčikas A. [1 ]
Šiaučiunas D. [2 ]
机构
[1] Department of Mathematics and Informatics, Vilnius University, LT-2600 Vilnius
[2] Department of Physics and Mathematics, Šiauliai University, LT-5400 Šiauliai
关键词
Approximate functional equation; Hurwitz zeta-function; Mean square;
D O I
10.1023/A:1013812605108
中图分类号
学科分类号
摘要
We obtain a more precise asymptotic formula than in [Lith. Math. J., 41(2), 168-177 (2001)] for the mean square of the periodic zeta-function. © 2001 Plenum Publishing Corporation.
引用
收藏
页码:361 / 372
页数:11
相关论文
共 50 条
[21]   Certain relationships among polygamma functions, Riemann zeta function and generalized zeta function [J].
Junesang Choi ;
Chao-Ping Chen .
Journal of Inequalities and Applications, 2013
[22]   Hurwitz Zeta Function Is Prime [J].
Dundulis, Marius ;
Garunkstis, Ramunas ;
Karikovas, Erikas ;
Simenas, Raivydas .
MATHEMATICS, 2023, 11 (05)
[23]   A Weighted Universality Theorem for Periodic Zeta-Functions [J].
Macaitiene, Renata ;
Stoncelis, Mindaugas ;
Siauciunas, Darius .
MATHEMATICAL MODELLING AND ANALYSIS, 2017, 22 (01) :95-105
[24]   On the Mishou Theorem for Zeta-Functions with Periodic Coefficients [J].
Balciunas, Aidas ;
Jasas, Mindaugas ;
Macaitiene, Renata ;
Siauciunas, Darius .
MATHEMATICS, 2023, 11 (09)
[25]   The Mean Square of the Hurwitz Zeta-Function in Short Intervals [J].
Laurincikas, Antanas ;
Siauciunas, Darius .
AXIOMS, 2024, 13 (08)
[26]   On the Asymptotics to all Orders of the Riemann Zeta Function and of a Two-Parameter Generalization of the Riemann Zeta Function [J].
Fokas, Athanassios S. ;
Lenells, Jonatan .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 275 (1351) :I-+
[27]   ON THE UNIVERSALITY OF THE HURWITZ ZETA-FUNCTION [J].
Laurincikas, Antanas .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (01) :155-165
[28]   New inequalities for the Hurwitz zeta function [J].
Batir, Necdet .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2008, 118 (04) :495-503
[29]   The Hurwitz zeta function as a convergent series [J].
Dwilewicz, Roman ;
Minac, Jan .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2006, 36 (04) :1191-1219
[30]   Sharp inequalities for the Hurwitz zeta function [J].
Alzer, H .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2005, 35 (02) :391-399