Application of Upper Hemi-Continuous Operators on Generalized Bi-quasi-variational Inequalities in Locally Convex Topological Vector Spaces

被引:0
作者
Mohammad S. R. Chowdhury
Kok-Keong Tan
机构
[1] The University of Queensland,Department of Mathematics
[2] Dalhousie University,Department of Mathematics and Statistics
关键词
Bilinear functional; generalized bi-quasi-variational inequality; locally convex space; lower semicontinuous; upper semicontinuous; upper hemi-continuous; monotone and semi-monotone operators;
D O I
10.1023/A:1009849400516
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$E$$ \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$F$$ \end{document} be Hausdorff topological vector spaces over the field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\Phi$$ \end{document}, let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left\langle , \right\rangle :F \times E \to \Phi$$ \end{document} be a bilinear functional, and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$X$$ \end{document} be a non-empty subset of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$E$$ \end{document}. Given a set-valued map \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$S:X \to 2^X$$ \end{document} and two set-valued maps \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$M,T:X \to 2^F$$ \end{document}, the generalized bi-quasi-variational inequality (GBQVI) problem is to find a point \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\hat y \in X$$ \end{document} and a point \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\hat w \in T(\hat y)$$ \end{document} such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\hat y \in S(\hat y)$$ \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\operatorname{Re} \left\langle {f - \hat w,\hat y - x} \right\rangle \leqslant 0$$ \end{document} for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$x \in S(\hat y)$$ \end{document} and for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$f \in M(\hat y)$$ \end{document} or to find a point \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\hat y \in X,$$ \end{document} a point \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\hat w \in T(\hat y)$$ \end{document} and a point \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\hat f \in M(\hat y)$$ \end{document} such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\hat y \in S(\hat y)$$ \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\operatorname{Re} \left\langle {\hat f - \hat w,\hat y - x} \right\rangle \leqslant 0$$ \end{document} for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$x \in S(\hat y)$$ \end{document}. The generalized bi-quasi-variational inequality was introduced first by Shih and Tan [8] in 1989. In this paper we shall obtain some existence theorems of generalized bi-quasi-variational inequalities as application of upper hemi-continuous operators [4] in locally convex topological vector spaces on compact sets.
引用
收藏
页码:333 / 344
页数:11
相关论文
共 13 条
[1]  
Bae J. S.(1993)Another generalization of Ky Fan's minimax inequality and its applications Bull. Inst. Math. Academia Sinica 21 229-244
[2]  
Kim W. K.(1997)Generalized variational inequalities for quasi-monotone operators and applications Bulletin of the Polish Academy of Sciences 45 25-54
[3]  
Tan K.-K.(1952)Sur un thè orè me fondamental de la thè orie des jeux C. R. Acad. Sci. Paris 234 2418-2410-343
[4]  
Chowdhury M. S. R.(1985)Generalized quasi-variational inequalities in locally convex topological vector spaces J. Math. Anal. Appl. 108 333-85
[5]  
Tan K. K.(1989)Generalized bi-quasi-variational inequalities J. Math. Anal. Appl. 143 66-181
[6]  
Kneser H.(1976)Nonlinear variational inequalities and fixed point theorems J. Math. Soc. Japan 28 166-398
[7]  
Shih M. H.(1987)Generalization of F.E. Browder's sharpened form of the Schauder fixed point theorem J. Austral. Math. Soc. 42 390-481
[8]  
Tan K. K.(1981)A minimax inequality and its applications to variational inequalities Pacific J. Math. 97 477-undefined
[9]  
Shih M. H.(undefined)undefined undefined undefined undefined-undefined
[10]  
Tan K. K.(undefined)undefined undefined undefined undefined-undefined