Approximations of the Korovkin type in Banach lattices

被引:0
|
作者
Halina Wiśniewska
Marek Wójtowicz
机构
[1] Uniwersytet Kazimierza Wielkiego,Instytut Matematyki
来源
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas | 2015年 / 109卷
关键词
Banach lattice; Korovkin-type approximation; Freudenthal spectral theorem; Disjointness preserving operators; Orthomorphisms; 41A36; 41A65; 46B42; 47B65;
D O I
暂无
中图分类号
学科分类号
摘要
Let E,G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E, G$$\end{document} denote two Banach lattices, and let (Tn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(T_n)$$\end{document} be a sequence of continuous linear operators E→G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E \rightarrow G$$\end{document}. We prove that if (Tn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(T_n)$$\end{document} satisfies the difference condition |Tn-Tm|x=|Tnx-Tmx|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|T_n - T_m| x = |T_n x - T_m x|$$\end{document} for all x∈E+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \in E^+$$\end{document}, and if the sequence (Tnx0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(T_n x_0)$$\end{document} converges for some x0∈E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0 \in E$$\end{document}, then (Tn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(T_n)$$\end{document} converges pointwise on the principal ideal Ax0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{x_0}$$\end{document} generated by x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0$$\end{document}. This result allows us to strengthen essentially an approximate-spectral theorem of the Freudenthal type obtained recently by A. W. Wickstead.
引用
收藏
页码:125 / 134
页数:9
相关论文
共 50 条
  • [1] Approximations of the Korovkin type in Banach lattices
    Wisniewska, Halina
    Wojtowicz, Marek
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2015, 109 (01) : 125 - 134
  • [2] Nirenberg-type problems in Banach lattices
    Duma, Adrian
    Duma, Ileana
    JOURNAL OF APPLIED ANALYSIS, 2010, 16 (02) : 189 - 197
  • [3] Mean ergodicity on Banach lattices and Banach spaces
    Eduard Yu. Emel’yanov
    Manfred P.H. Wolff
    Archiv der Mathematik, 1999, 72 : 214 - 218
  • [4] On finite elements in vector lattices and Banach lattices
    Chen, ZL
    Weber, MR
    MATHEMATISCHE NACHRICHTEN, 2006, 279 (5-6) : 495 - 501
  • [5] Some theorems of Korovkin type
    Hachiro, T
    Okayasu, T
    STUDIA MATHEMATICA, 2003, 155 (02) : 131 - 143
  • [6] Some approximation properties of Banach spaces and Banach lattices
    Tadeusz Figiel
    William B. Johnson
    Aleksander Pełczyński
    Israel Journal of Mathematics, 2011, 183
  • [7] A minimax theorem in Banach lattices
    D'Aniello, E
    POSITIVITY, 2000, 4 (02) : 143 - 160
  • [8] Bibasic sequences in Banach lattices
    Taylor, M. A.
    Troitsky, V. G.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 278 (10)
  • [9] Weak precompactness in Banach lattices
    Bo Xiang
    Jinxi Chen
    Lei Li
    Positivity, 2022, 26
  • [10] Martingales in Banach lattices, II
    Gessesse, Hailegebriel E.
    Troitsky, Vladimir G.
    POSITIVITY, 2011, 15 (01) : 49 - 55