首页
学术期刊
论文检测
AIGC检测
热点
更多
数据
Approximations of the Korovkin type in Banach lattices
被引:0
|
作者
:
Halina Wiśniewska
论文数:
0
引用数:
0
h-index:
0
机构:
Uniwersytet Kazimierza Wielkiego,Instytut Matematyki
Halina Wiśniewska
Marek Wójtowicz
论文数:
0
引用数:
0
h-index:
0
机构:
Uniwersytet Kazimierza Wielkiego,Instytut Matematyki
Marek Wójtowicz
机构
:
[1]
Uniwersytet Kazimierza Wielkiego,Instytut Matematyki
来源
:
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas
|
2015年
/ 109卷
关键词
:
Banach lattice;
Korovkin-type approximation;
Freudenthal spectral theorem;
Disjointness preserving operators;
Orthomorphisms;
41A36;
41A65;
46B42;
47B65;
D O I
:
暂无
中图分类号
:
学科分类号
:
摘要
:
Let E,G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E, G$$\end{document} denote two Banach lattices, and let (Tn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(T_n)$$\end{document} be a sequence of continuous linear operators E→G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E \rightarrow G$$\end{document}. We prove that if (Tn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(T_n)$$\end{document} satisfies the difference condition |Tn-Tm|x=|Tnx-Tmx|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|T_n - T_m| x = |T_n x - T_m x|$$\end{document} for all x∈E+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \in E^+$$\end{document}, and if the sequence (Tnx0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(T_n x_0)$$\end{document} converges for some x0∈E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0 \in E$$\end{document}, then (Tn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(T_n)$$\end{document} converges pointwise on the principal ideal Ax0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{x_0}$$\end{document} generated by x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0$$\end{document}. This result allows us to strengthen essentially an approximate-spectral theorem of the Freudenthal type obtained recently by A. W. Wickstead.
引用
收藏
页码:125 / 134
页数:9
相关论文
共 50 条
[1]
Approximations of the Korovkin type in Banach lattices
Wisniewska, Halina
论文数:
0
引用数:
0
h-index:
0
机构:
Uniwersytet Kazimierza Wielkiego, Inst Matemat, PL-85072 Bydgoszcz, Poland
Uniwersytet Kazimierza Wielkiego, Inst Matemat, PL-85072 Bydgoszcz, Poland
Wisniewska, Halina
Wojtowicz, Marek
论文数:
0
引用数:
0
h-index:
0
机构:
Uniwersytet Kazimierza Wielkiego, Inst Matemat, PL-85072 Bydgoszcz, Poland
Uniwersytet Kazimierza Wielkiego, Inst Matemat, PL-85072 Bydgoszcz, Poland
Wojtowicz, Marek
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS,
2015,
109
(01)
: 125
-
134
[2]
Nirenberg-type problems in Banach lattices
Duma, Adrian
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Craiova, Dept Math, AI Cuza Str 13, Craiova 200585, Dolj, Romania
Univ Craiova, Dept Math, AI Cuza Str 13, Craiova 200585, Dolj, Romania
Duma, Adrian
Duma, Ileana
论文数:
0
引用数:
0
h-index:
0
机构:
Spiru Haret Univ, Dept Financial Management & Accounting, Craiova 200690, Dolj, Romania
Univ Craiova, Dept Math, AI Cuza Str 13, Craiova 200585, Dolj, Romania
Duma, Ileana
JOURNAL OF APPLIED ANALYSIS,
2010,
16
(02)
: 189
-
197
[3]
Mean ergodicity on Banach lattices and Banach spaces
Eduard Yu. Emel’yanov
论文数:
0
引用数:
0
h-index:
0
机构:
Sobolev Institute of Mathematics at Novosibirsk,
Eduard Yu. Emel’yanov
Manfred P.H. Wolff
论文数:
0
引用数:
0
h-index:
0
机构:
Sobolev Institute of Mathematics at Novosibirsk,
Manfred P.H. Wolff
Archiv der Mathematik,
1999,
72
: 214
-
218
[4]
On finite elements in vector lattices and Banach lattices
Chen, ZL
论文数:
0
引用数:
0
h-index:
0
机构:
Tech Univ Dresden, Fachrichtung Math, D-01062 Dresden, Germany
Chen, ZL
Weber, MR
论文数:
0
引用数:
0
h-index:
0
机构:
Tech Univ Dresden, Fachrichtung Math, D-01062 Dresden, Germany
Tech Univ Dresden, Fachrichtung Math, D-01062 Dresden, Germany
Weber, MR
MATHEMATISCHE NACHRICHTEN,
2006,
279
(5-6)
: 495
-
501
[5]
Some theorems of Korovkin type
Hachiro, T
论文数:
0
引用数:
0
h-index:
0
机构:
Sendai Shirayuri Gakuen High Sch, Izumi Ku, Sendai, Miyagi 9813205, Japan
Hachiro, T
Okayasu, T
论文数:
0
引用数:
0
h-index:
0
机构:
Sendai Shirayuri Gakuen High Sch, Izumi Ku, Sendai, Miyagi 9813205, Japan
Okayasu, T
STUDIA MATHEMATICA,
2003,
155
(02)
: 131
-
143
[6]
Some approximation properties of Banach spaces and Banach lattices
Tadeusz Figiel
论文数:
0
引用数:
0
h-index:
0
机构:
Polish Academy of Sciences,Institute of Mathematics
Tadeusz Figiel
William B. Johnson
论文数:
0
引用数:
0
h-index:
0
机构:
Polish Academy of Sciences,Institute of Mathematics
William B. Johnson
Aleksander Pełczyński
论文数:
0
引用数:
0
h-index:
0
机构:
Polish Academy of Sciences,Institute of Mathematics
Aleksander Pełczyński
Israel Journal of Mathematics,
2011,
183
[7]
A minimax theorem in Banach lattices
论文数:
引用数:
h-index:
机构:
D'Aniello, E
POSITIVITY,
2000,
4
(02)
: 143
-
160
[8]
Bibasic sequences in Banach lattices
Taylor, M. A.
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
Taylor, M. A.
Troitsky, V. G.
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
Troitsky, V. G.
JOURNAL OF FUNCTIONAL ANALYSIS,
2020,
278
(10)
[9]
Weak precompactness in Banach lattices
Bo Xiang
论文数:
0
引用数:
0
h-index:
0
机构:
Southwest Jiaotong University,School of Mathematics
Bo Xiang
Jinxi Chen
论文数:
0
引用数:
0
h-index:
0
机构:
Southwest Jiaotong University,School of Mathematics
Jinxi Chen
Lei Li
论文数:
0
引用数:
0
h-index:
0
机构:
Southwest Jiaotong University,School of Mathematics
Lei Li
Positivity,
2022,
26
[10]
Martingales in Banach lattices, II
Gessesse, Hailegebriel E.
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
Gessesse, Hailegebriel E.
Troitsky, Vladimir G.
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
Troitsky, Vladimir G.
POSITIVITY,
2011,
15
(01)
: 49
-
55
←
1
2
3
4
5
→