A Remark on Asymptotic Completeness for the Critical Nonlinear Klein-Gordon Equation

被引:0
作者
Hans Lindblad
Avy Soffer
机构
[1] University of California at San Diego,Department of Mathematics
[2] Rutgers University,Department of Mathematics
来源
Letters in Mathematical Physics | 2005年 / 73卷
关键词
Klein-Gordon; global existence; long-range scattering and completeness;
D O I
暂无
中图分类号
学科分类号
摘要
We give a short proof of asymptotic completeness and global existence for the cubic Nonlinear Klein-Gordon equation in one dimension. Our approach to dealing with the long range behavior of the asymptotic solution is by reducing it, in hyperbolic coordinates to the study of an ODE. Similar arguments extend to higher dimensions and other long range type nonlinear problems.
引用
收藏
页码:249 / 258
页数:9
相关论文
共 11 条
[1]  
Delort J.-M.(2001)Existence globale et comportement asymptotique pour l’équation de Klein-Gordon quasi linéaire à données petites en dimension 1 Ann. Sci. école Norm. Sup. 34 1-61
[2]  
Klainerman S.(1985)Global existence of small amplitude solutions to nonlinear Klein- Gordon equations in four space dimensions Comm. Pure Appl. Math. 38 631-641
[3]  
Lindblad H.(1992)Global solutions of nonlinear wave equations Comm. Pure Appl. Math. 45 1063-1096
[4]  
Lindblad H.(2003)The weak null condition for Einstein’s equations C. R. Math. Acad. Sci. Paris 336 901-906
[5]  
Rodnianski I.(2005)A remark on long range scattering for the nonlinear Klein-Gordon equation J. Hyperbolic Differ. Equ. 2 77-89
[6]  
Lindblad H.(1983)A wave operator for a non-linear Klein-Gordon equation Lett. Math. Phys. 7 387-398
[7]  
Soffer A.(1985)Normal forms and quadratic nonlinear Klein-Gordon equations Comm. Pure Appl. Math. 38 685-696
[8]  
Simon J.C.H.(1993)The Cauchy problem for nonlinear Klein-Gordon equations Comm. Math. Phys. 152 433-478
[9]  
Shatah J.(undefined)undefined undefined undefined undefined-undefined
[10]  
Simon J.C.H.(undefined)undefined undefined undefined undefined-undefined