Decay of Nonnegative Solutions of Singular Parabolic Equations with KPZ-Nonlinearities

被引:0
作者
A. B. Muravnik
机构
[1] JSC Concern “Sozvezdie”,
[2] RUDN University,undefined
来源
Computational Mathematics and Mathematical Physics | 2020年 / 60卷
关键词
parabolic equations; quasilinear equations; KPZ-nonlinearities; lower-order terms; behavior at infinity;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1375 / 1380
页数:5
相关论文
共 53 条
[11]  
Hinrichsen H.(2013) vicious walkers for large Commun. Math. Phys. 323 451-485
[12]  
Anh V. V.(2014): Application to the directed polymer and KPZ interfaces Math. Sci. Res. Inst. Publ. 65 483-493
[13]  
Leonenko N. N.(2016)Gaussian multiplicative chaos and KPZ duality Probab. Theory Related Fields 166 365-428
[14]  
Sakhno L. M.(2017)KPZ Scaling Theory and the Semidiscrete Directed Polymer Model J. Funct. Anal. 273 1165-1204
[15]  
Spohn H.(1978)Occupation times of long-range exclusion and connections to KPZ class exponents Ind. Univ. Math. J. 27 779-790
[16]  
Gladkov A.(1978)A coupled KPZ equation, its two types of approximations, and existence of global solutions Commun. Pure Appl. Math. 31 619-645
[17]  
Guedda M.(1982)On some existence theorems for semi-linear elliptic equations USSR-Sb. 41 269-280
[18]  
Kersner R.(1962)Invariant criteria for existence of solutions to second-order quasilinear elliptic equations Russ. Math. Surv. 17 1-143
[19]  
Benjamini I.(1966)“On equations of the form Sov. Math. Dokl. 7 388-391
[20]  
Schramm O.(2010)Linear equations of the second order of parabolic type J. Math. Sci. 171 46-57