Decay of Nonnegative Solutions of Singular Parabolic Equations with KPZ-Nonlinearities

被引:0
作者
A. B. Muravnik
机构
[1] JSC Concern “Sozvezdie”,
[2] RUDN University,undefined
来源
Computational Mathematics and Mathematical Physics | 2020年 / 60卷
关键词
parabolic equations; quasilinear equations; KPZ-nonlinearities; lower-order terms; behavior at infinity;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1375 / 1380
页数:5
相关论文
共 53 条
[1]  
Kardar M.(1986)Dynamic scaling of growing interfaces Phys. Rev. Lett. 56 889-892
[2]  
Parisi G.(1989)Burgers equation with correlated noise: Renormalization group analysis and applications to directed polymers and interface growth Phys. Rev. A 39 3053-3075
[3]  
Zhang Y.-C.(2003)Self-similar solutions to the generalized deterministic KPZ equation Nonlinear Differ. Equations Appl. 10 1-13
[4]  
Medina E.(2004)Mean field theory for skewed height profiles in KPZ growth processes J. Phys. A 37 11085-11100
[5]  
Hwa T.(2006)Spectral properties of burgers and KPZ turbulence J. Stat. Phys. 122 949-974
[6]  
Kardar M.(2006)Exact solutions for KPZ-type growth processes, random matrices, and equilibrium shapes of crystals Physica A 369 71-99
[7]  
Zhang Y.-C.(2008)A KPZ growth model with possibly unbounded data: correctness and blow-up Nonlinear Anal. 68 2079-2091
[8]  
Guedda M.(2009)KPZ in one dimensional random geometry of multiplicative cascades Commun. Math. Phys. 289 653-662
[9]  
Kersner R.(2012)“Universality of slow decorrelation in KPZ growth,” Ann. Inst. Henri Poincaré Probab Stat. 48 134-150
[10]  
Ginelli F.(2012)Extremes of J. Stat. Phys. 149 385-410