High-Throughput Classification of Radiographs Using Deep Convolutional Neural Networks

被引:0
|
作者
Alvin Rajkomar
Sneha Lingam
Andrew G. Taylor
Michael Blum
John Mongan
机构
[1] University of California,Department of Medicine, Division of Hospital Medicine
[2] San Francisco,Center for Digital Health Innovation
[3] University of California,Department of Radiology and Biomedical Imaging
[4] San Francisco,undefined
[5] University of California,undefined
[6] San Francisco,undefined
来源
Journal of Digital Imaging | 2017年 / 30卷
关键词
Radiography; Chest radiographs; Machine learning; Artificial neural networks; Computer vision; Deep learning; Convolutional neural network;
D O I
暂无
中图分类号
学科分类号
摘要
The study aimed to determine if computer vision techniques rooted in deep learning can use a small set of radiographs to perform clinically relevant image classification with high fidelity. One thousand eight hundred eighty-five chest radiographs on 909 patients obtained between January 2013 and July 2015 at our institution were retrieved and anonymized. The source images were manually annotated as frontal or lateral and randomly divided into training, validation, and test sets. Training and validation sets were augmented to over 150,000 images using standard image manipulations. We then pre-trained a series of deep convolutional networks based on the open-source GoogLeNet with various transformations of the open-source ImageNet (non-radiology) images. These trained networks were then fine-tuned using the original and augmented radiology images. The model with highest validation accuracy was applied to our institutional test set and a publicly available set. Accuracy was assessed by using the Youden Index to set a binary cutoff for frontal or lateral classification. This retrospective study was IRB approved prior to initiation. A network pre-trained on 1.2 million greyscale ImageNet images and fine-tuned on augmented radiographs was chosen. The binary classification method correctly classified 100 % (95 % CI 99.73–100 %) of both our test set and the publicly available images. Classification was rapid, at 38 images per second. A deep convolutional neural network created using non-radiological images, and an augmented set of radiographs is effective in highly accurate classification of chest radiograph view type and is a feasible, rapid method for high-throughput annotation.
引用
收藏
页码:95 / 101
页数:6
相关论文
共 50 条
  • [41] Environment Classification for Robotic Leg Prostheses and Exoskeletons Using Deep Convolutional Neural Networks
    Laschowski, Brokoslaw
    McNally, William
    Wong, Alexander
    McPhee, John
    FRONTIERS IN NEUROROBOTICS, 2022, 15
  • [42] Automated Truck Taxonomy Classification Using Deep Convolutional Neural Networks
    Abdullah Almutairi
    Pan He
    Anand Rangarajan
    Sanjay Ranka
    International Journal of Intelligent Transportation Systems Research, 2022, 20 : 483 - 494
  • [43] Maize leaf disease classification using deep convolutional neural networks
    Priyadharshini, Ramar Ahila
    Arivazhagan, Selvaraj
    Arun, Madakannu
    Mirnalini, Annamalai
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (12) : 8887 - 8895
  • [44] Image Classification And Recognition Based On The Deep Convolutional Neural Network
    Wang, Yuan-yuan
    Zhang, Long-jun
    Xiao, Yang
    Xu, Jing
    Zhang, You-jun
    PROCEEDINGS OF THE 2017 2ND JOINT INTERNATIONAL INFORMATION TECHNOLOGY, MECHANICAL AND ELECTRONIC ENGINEERING CONFERENCE (JIMEC 2017), 2017, 62 : 171 - 174
  • [45] Internet Traffic Classification Using an Ensemble of Deep Convolutional Neural Networks
    Shahraki, Amin
    Abbasi, Mahmoud
    Taherkordi, Amir
    Kaosar, Mohammed
    PROCEEDINGS OF THE 4TH FLEXNETS WORKSHOP ON FLEXIBLE NETWORKS, ARTIFICIAL INTELLIGENCE SUPPORTED NETWORK FLEXIBILITY AND AGILITY (FLEXNETS'21), 2021, : 38 - 43
  • [46] Automatic Fish Species Classification Using Deep Convolutional Neural Networks
    Muhammad Ather Iqbal
    Zhijie Wang
    Zain Anwar Ali
    Shazia Riaz
    Wireless Personal Communications, 2021, 116 : 1043 - 1053
  • [47] Cell dynamic morphology classification using deep convolutional neural networks
    Li, Heng
    Pang, Fengqian
    Shi, Yonggang
    Liu, Zhiwen
    CYTOMETRY PART A, 2018, 93A (06) : 628 - 638
  • [48] Automated Truck Taxonomy Classification Using Deep Convolutional Neural Networks
    Almutairi, Abdullah
    He, Pan
    Rangarajan, Anand
    Ranka, Sanjay
    INTERNATIONAL JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS RESEARCH, 2022, 20 (02) : 483 - 494
  • [49] Classification of olive leaf diseases using deep convolutional neural networks
    Sinan Uğuz
    Nese Uysal
    Neural Computing and Applications, 2021, 33 : 4133 - 4149
  • [50] Classification of olive leaf diseases using deep convolutional neural networks
    Uguz, Sinan
    Uysal, Nese
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (09) : 4133 - 4149