High-Throughput Classification of Radiographs Using Deep Convolutional Neural Networks

被引:0
|
作者
Alvin Rajkomar
Sneha Lingam
Andrew G. Taylor
Michael Blum
John Mongan
机构
[1] University of California,Department of Medicine, Division of Hospital Medicine
[2] San Francisco,Center for Digital Health Innovation
[3] University of California,Department of Radiology and Biomedical Imaging
[4] San Francisco,undefined
[5] University of California,undefined
[6] San Francisco,undefined
来源
Journal of Digital Imaging | 2017年 / 30卷
关键词
Radiography; Chest radiographs; Machine learning; Artificial neural networks; Computer vision; Deep learning; Convolutional neural network;
D O I
暂无
中图分类号
学科分类号
摘要
The study aimed to determine if computer vision techniques rooted in deep learning can use a small set of radiographs to perform clinically relevant image classification with high fidelity. One thousand eight hundred eighty-five chest radiographs on 909 patients obtained between January 2013 and July 2015 at our institution were retrieved and anonymized. The source images were manually annotated as frontal or lateral and randomly divided into training, validation, and test sets. Training and validation sets were augmented to over 150,000 images using standard image manipulations. We then pre-trained a series of deep convolutional networks based on the open-source GoogLeNet with various transformations of the open-source ImageNet (non-radiology) images. These trained networks were then fine-tuned using the original and augmented radiology images. The model with highest validation accuracy was applied to our institutional test set and a publicly available set. Accuracy was assessed by using the Youden Index to set a binary cutoff for frontal or lateral classification. This retrospective study was IRB approved prior to initiation. A network pre-trained on 1.2 million greyscale ImageNet images and fine-tuned on augmented radiographs was chosen. The binary classification method correctly classified 100 % (95 % CI 99.73–100 %) of both our test set and the publicly available images. Classification was rapid, at 38 images per second. A deep convolutional neural network created using non-radiological images, and an augmented set of radiographs is effective in highly accurate classification of chest radiograph view type and is a feasible, rapid method for high-throughput annotation.
引用
收藏
页码:95 / 101
页数:6
相关论文
共 50 条
  • [1] High-Throughput Classification of Radiographs Using Deep Convolutional Neural Networks
    Rajkomar, Alvin
    Lingam, Sneha
    Taylor, Andrew G.
    Blum, Michael
    Mongan, John
    JOURNAL OF DIGITAL IMAGING, 2017, 30 (01) : 95 - 101
  • [2] Classification of racehorse limb radiographs using deep convolutional neural networks
    Costa da Silva, Raniere Gaia
    Mishra, Ambika Prasad
    Riggs, Christopher Michael
    Doube, Michael
    VETERINARY RECORD OPEN, 2023, 10 (01)
  • [3] Brain tumor classification using deep convolutional neural networks
    Nurtay, M.
    Kissina, M.
    Tau, A.
    Akhmetov, A.
    Alina, G.
    Mutovina, N.
    COMPUTER OPTICS, 2025, 49 (02) : 253 - 262
  • [5] Celiac Disease Deep Learning Image Classification Using Convolutional Neural Networks
    Carreras, Joaquim
    JOURNAL OF IMAGING, 2024, 10 (08)
  • [6] Assessment of Asteroid Classification Using Deep Convolutional Neural Networks
    Bacu, Victor
    Nandra, Constantin
    Sabou, Adrian
    Stefanut, Teodor
    Gorgan, Dorian
    AEROSPACE, 2023, 10 (09)
  • [7] Dental disease detection on periapical radiographs based on deep convolutional neural networks
    Chen, Hu
    Li, Hong
    Zhao, Yijiao
    Zhao, Jianjiang
    Wang, Yong
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2021, 16 (04) : 649 - 661
  • [8] High-Throughput Phenotyping of Soybean Maturity Using Time Series UAV Imagery and Convolutional Neural Networks
    Trevisan, Rodrigo
    Perez, Osvaldo
    Schmitz, Nathan
    Diers, Brian
    Martin, Nicolas
    REMOTE SENSING, 2020, 12 (21) : 1 - 19
  • [9] Dental disease detection on periapical radiographs based on deep convolutional neural networks
    Hu Chen
    Hong Li
    Yijiao Zhao
    Jianjiang Zhao
    Yong Wang
    International Journal of Computer Assisted Radiology and Surgery, 2021, 16 : 649 - 661
  • [10] Plankton Classification with Deep Convolutional Neural Networks
    Ouyang Py
    Hu Hong
    Shi Zhongzhi
    2016 IEEE INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC), 2016, : 132 - 136