Bessel Potentials in Ahlfors Regular Metric Spaces

被引:0
作者
Miguel Andrés Marcos
机构
[1] Instituto de Matemática Aplicada del Litoral,
[2] UNL,undefined
[3] CONICET,undefined
[4] FIQ,undefined
来源
Potential Analysis | 2016年 / 45卷
关键词
Bessel potential; Ahlfors spaces; Fractional derivative; Sobolev spaces; Besov spaces; 43A85;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we introduce Bessel potentials and the Sobolev potential spaces resulting from them in the context of Ahlfors regular metric spaces. The Bessel kernel is defined using a Coifman type approximation of the identity, and we show integration against it improves the regularity of Lipschitz, Besov and Sobolev-type functions. For potential spaces, we prove density of Lipschitz functions, and several embedding results, including Sobolev-type embedding theorems. Finally, using singular integrals techniques such as the T1 theorem, we find that for small orders of regularity Bessel potentials are inversible, its inverse in terms of the fractional derivative, and show a way to characterize potential spaces, concluding that a function belongs to the Sobolev potential space if and only if itself and its fractional derivative are in Lp. Moreover, this characterization allows us to prove these spaces in fact coincide with the classical potential Sobolev spaces in the Euclidean case.
引用
收藏
页码:201 / 227
页数:26
相关论文
共 50 条
  • [1] Bessel Potentials in Ahlfors Regular Metric Spaces
    Andres Marcos, Miguel
    POTENTIAL ANALYSIS, 2016, 45 (02) : 201 - 227
  • [2] Hardy Spaces on Ahlfors-Regular Quasi Metric Spaces Preface
    Alvarado, Ryan
    Mitrea, Marius
    HARDY SPACES ON AHLFORS-REGULAR QUASI METRIC SPACES: A SHARP THEORY, 2015, 2142 : V - +
  • [3] Traces of Sobolev Spaces on Piecewise Ahlfors–David Regular Sets
    Tyulenev A.I.
    Mathematical Notes, 2023, 114 (3-4) : 351 - 376
  • [4] On a characterization of Bessel potentials on Lp(.)(Rn) spaces
    Cruz-Baez, D. I.
    RECENT ADVANCES IN APPLIED MATHEMATICS, 2009, : 52 - +
  • [5] A supercritical estimate for Bessel potentials on Lorentz spaces
    Chen, You-Wei
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2021, 28 (02):
  • [6] A supercritical estimate for Bessel potentials on Lorentz spaces
    You-Wei Chen
    Nonlinear Differential Equations and Applications NoDEA, 2021, 28
  • [7] Generalized bessel potentials on Lipschitz type spaces
    Iaffei, B
    MATHEMATISCHE NACHRICHTEN, 2005, 278 (04) : 421 - 436
  • [8] Boundedness of Gaussian Bessel potentials and fractional derivatives on variable Gaussian Besov-Lipschitz spaces
    Pineda, Ebner
    Rodriguez, Luz
    Urbina, Wilfredo
    AIMS MATHEMATICS, 2025, 10 (01): : 1026 - 1042
  • [9] Bessel sequences in Sobolev spaces
    Jia, RQ
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 20 (02) : 298 - 311
  • [10] Spectral theory of Riesz potentials on quasi-metric spaces
    Triebel, H
    Yang, DC
    MATHEMATISCHE NACHRICHTEN, 2002, 238 : 160 - 184