On the Motion of a Compact Elastic Body

被引:0
作者
Robert Beig
Michael Wernig-Pichler
机构
[1] Universität Wien,Institut für Theoretische Physik der
来源
Communications in Mathematical Physics | 2007年 / 271卷
关键词
Killing Vector; Rigid Motion; Elastic Equation; Material Space; Strong Ellipticity;
D O I
暂无
中图分类号
学科分类号
摘要
We study the problem of motion of a relativistic, ideal elastic solid with free surface boundary by casting the equations in material form (“Lagrangian coordinates”). By applying a basic theorem due to Koch, we prove short-time existence and uniqueness for solutions close to a trivial solution. This trivial, or natural, solution corresponds to a stress-free body in rigid motion.
引用
收藏
页码:455 / 465
页数:10
相关论文
共 13 条
[1]  
Beig R.(2003)Relativistic elasticity Class. Quantum Grav. 20 889-904
[2]  
Schmidt B.G.(2002)A Riemannian version of Korn’s inequality Calc. Var. Partial Differ. Eq. 14 517-530
[3]  
Chen W.(1992)Deformations of Incompressible Bodies with Free Boundaries Arch. Rat. Mech. Anal. 120 61-97
[4]  
Jost J.(1995)Korn’s inequalities and their applications in continuum mechanics SIAM Rev. 37 491-511
[5]  
Ebin D.(1976)Well-posed quasilinear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity Arch. Rat. Mech. Anal. 63 273-294
[6]  
Horgan C.O.(1992)Relativistic elastomechanics as a Lagrangian field theory J. Geom. Phys. 9 207-223
[7]  
Hughes T.(1993)Mixed problems for fully nonlinear hyperbolic equations Math. Z. 214 9-42
[8]  
Kato T.(2005)Wellposedness for the motion of a compressible liquid with free surface boundary Commun. Math. Phys. 260 319-392
[9]  
Marsden J.(undefined)undefined undefined undefined undefined-undefined
[10]  
Kijowski J.(undefined)undefined undefined undefined undefined-undefined