Graph energy and topological descriptors of zero divisor graph associated with commutative ring

被引:0
作者
Clement Johnson
Ravi Sankar
机构
[1] Vellore Institute of Technology,Department of Mathematics, School of Advanced Sciences
来源
Journal of Applied Mathematics and Computing | 2023年 / 69卷
关键词
Commutative ring; Zero divisor graph; Adjacency matrix; Energy; Topological index; 05C25; 05C50; 05C90; 15A18; 13A70;
D O I
暂无
中图分类号
学科分类号
摘要
Let R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}$$\end{document} be a commutative ring with all non-zero zero divisors Z∗(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Z^{*}}({\mathcal {R}})$$\end{document} of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}$$\end{document}. Then Γ(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma ({\mathcal {R}})$$\end{document} is said to be a zero divisor graph if and only if a·b=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a \cdot b= 0$$\end{document} where a,b∈V(Γ(R))=Z∗(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a,b \in V(\Gamma ({\mathcal {R}})) = {Z^{*}}({\mathcal {R}})$$\end{document} and (a,b)∈E(Γ(R))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(a,b) \in E(\Gamma ({\mathcal {R}}))$$\end{document}. Graph energy E(Γ(R))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {E}}(\Gamma ({\mathcal {R}}))$$\end{document} is defined as the sum of the absolute eigenvalues of the adjacency matrix of Γ(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma ({\mathcal {R}})$$\end{document}, then E(Γ(R))=∑i=1n|λi|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {E}}(\Gamma ({\mathcal {R}}))=\sum _{i=1}^n |\lambda _{i}|$$\end{document}. A topological index is a numeric quantity associated with a chemical structure that attempts to link the chemical structure to various physicochemical properties, chemical reactivity, or biological activity. This paper discusses the graph energy and various topological indices of zero divisor graph associated with the commutative ring.
引用
收藏
页码:2641 / 2656
页数:15
相关论文
共 58 条
[1]  
Anderson DF(1999)The zero-divisor graph of a commutative ring J. Algebra 217 434-447
[2]  
Livingston PS(2019)On eccentric topological indices based on edges of zero divisor graphs Symmetry 11 907-226
[3]  
Ali Koam NA(2022)On the topological indices of commuting graphs for finite non-Abelian groups Symmetry 14 1266-1264
[4]  
Ahamad A(1988)Coloring of commutative rings J. Algebra 116 208-849
[5]  
Haider A(2011)On the Ediz eccentric connectivity index of a graph Optoelectron. Adv. Mater. Rapid Commun. 5 1263-538
[6]  
Ali F(2018)Construction algorithm for zero divisor graphs of finite commutative rings and their vertex-based eccentric topological indices Mathematics 6 301-22
[7]  
Rather BA(2015)On some eccentricity based topological indices of nanostar dendrimers Optoelectron. Adv. Mater.-Rapid Commun. 9 842-1014
[8]  
Fatima N(1972)Graph theory and molecular orbitals Total Chem. Phys. lett. 17 535-361
[9]  
Sarfraz M(1978)-electron energy of alternant hydrocarbons Ber. Math. Statist. Sekt. Forsch-ungszentram Graz. 103 1-100
[10]  
Ullah A(1995)The energy of a graph J. Chem. Inf. Comput. Sci. 35 1011-25