Normality and Nondegeneracy for Optimal Control Problems with State Constraints

被引:0
作者
Fernando A. C. C. Fontes
Hélène Frankowska
机构
[1] Universidade do Porto,SYSTEC
[2] Sorbonne Universits,ISR, Faculdade de Engenharia
[3] UPMC Univ Paris 06,CNRS, IMJ
[4] Univ Paris Diderot,PRG, UMR 7586
来源
Journal of Optimization Theory and Applications | 2015年 / 166卷
关键词
Optimal control; Maximum principle; State constraints; Constraint qualifications; Normality; Degeneracy; Nonsmooth analysis; Oriented distance; 49K15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate normal and nondegenerate forms of the maximum principle for optimal control problems with state constraints. We propose new constraint qualifications guaranteeing nondegeneracy and normality that have to be checked on smaller sets of points of an optimal trajectory than those in known sufficient conditions. In fact, the constraint qualifications proposed impose the existence of an inward pointing velocity just on the instants of time for which the optimal trajectory has an outward pointing velocity.
引用
收藏
页码:115 / 136
页数:21
相关论文
共 43 条
  • [1] Ferreira MMA(2006)On the regularity of optimal controls for a class of problems with state constraints Int. J. Syst. Sci. 37 495-502
  • [2] Frankowska H(2006)Lipschitzianity of optimal trajectories for the Bolza optimal control problem Calc. Var. Partial. Differ. Equ. 27 467-492
  • [3] Marchini EM(2003)Lipschitz continuity of optimal controls for state constrained problems SIAM J. Control Optim. 42 1727-1744
  • [4] Galbraith GN(2013)A second-order maximum principle in optimal control under state constraints Serdica Math. J. 39 233-270
  • [5] Vinter RB(2012)Variational approach to second-order optimality conditions for control problems with pure state constraints SIAM J. Control Optim. 50 1139-1173
  • [6] Frankowska H(2013)Feasible perturbations of control systems with pure state constraints and applications to second-order optimality conditions Appl. Math. Optim. 68 219-253
  • [7] Hoehener D(1997)Investigation of the degeneracy phenomenon of the maximum principle for optimal control problems with state constraints SIAM J. Control Optim. 35 930-952
  • [8] Tonon D(1985)The maximum principle in a problem with phase constraints Sov. J. Comput. Syst. Sci. 23 28-35
  • [9] Hoehener D(1985)Necessary conditions for strong minimum in optimal control problems with degeneration of endpoint and phase constraints Usp. Mat. Nauk 40 175-176
  • [10] Hoehener D(1994)When is the maximum principle for state constrained problems nondegenerate? J. Math. Anal. Appl. 187 438-467