Exponential Decay of Correlations in the 2D Random Field Ising Model

被引:0
作者
Michael Aizenman
Matan Harel
Ron Peled
机构
[1] Princeton University,Departments of Mathematics and Physics
[2] Weizmann Institute of Science,School of Mathematical Sciences
[3] Tel Aviv University,undefined
来源
Journal of Statistical Physics | 2020年 / 180卷
关键词
Random field Ising model; Quenched disorder; 2D; Disagreement percolation; Exponential decay; Anti-concentration bounds;
D O I
暂无
中图分类号
学科分类号
摘要
An extension of the Ising spin configurations to continuous functions is used for an exact representation of the random field Ising model’s order parameter in terms of disagreement percolation. This facilitates an extension of the recent analyses of the decay of correlations to positive temperatures, at homogeneous but arbitrarily weak disorder.
引用
收藏
页码:304 / 331
页数:27
相关论文
共 30 条
[1]  
Aizenman M(1999)Hölder regularity and dimension bounds for random curves Duke Math. J. 99 419-453
[2]  
Burchard A(2012)Proof of rounding by quenched disorder of first order transitions in low-dimensional quantum systems J. Math. Phys. 53 023301-528
[3]  
Aizenman M(1989)Rounding of first-order phase transitions in systems with quenched disorder Phys. Rev. Lett. 62 2503-496
[4]  
Greenblatt RL(1990)Rounding effects of quenched randomness on first-order phase transitions Commun. Math. Phys. 130 489-1832
[5]  
Lebowitz JL(1985)Some properties of random Ising models J. Stat. Phys. 38 483-1032
[6]  
Aizenman M(1987)Lower critical dimension for the random-field Ising model Phys. Rev. Lett. 59 1829-572
[7]  
Wehr J(1988)The hierarchical random field Ising model J. Stat. Phys. 51 1021-284
[8]  
Aizenman M(1988)Phase transition in the 3d random field Ising model Commun. Math. Phys. 116 539-267
[9]  
Wehr J(2018)A note on exponential decay in the random field Ising model J. Stat. Phys. 173 268-581
[10]  
Berretti A(2018)On the decay of correlations in the random field Ising model Commun. Math. Phys. 362 253-176