An operational calculus for a Mehler-Fock type index transform on distributions of compact support

被引:0
作者
H. M. Srivastava
B. J. González
E. R. Negrín
机构
[1] University of Victoria,Department of Mathematics and Statistics
[2] China Medical University,Department of Medical Research China Medical University Hospital
[3] Azerbaijan University,Department of Mathematics and Informatics
[4] International Telematic University Uninettuno,Section of Mathematics
[5] Universidad de La Laguna (ULL),Departamento de Análisis Matemático, Facultad de Ciencias
[6] Universidad de La Laguna (ULL),Instituto de Matemáticas y Aplicaciones (IMAULL)
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2023年 / 117卷
关键词
Mehler-Fock transform; Operational calculus; Distributions of compact support; Associated Legendre function; Differential operator; Regular distributions; Primary 44A15; Secondary 33C05; 46F12;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present a systematic analysis of an operational calculus which is based upon a Mehler-Fock type index transform on distributions of compact support over the interval (1,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1,\infty )$$\end{document}. By means of this transform, we obtain a distribution f on the interval (1,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1,\infty )$$\end{document}, which satisfies an equation of the type P(At′)u=g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P\big (A^{\prime }_t\big ) u =g$$\end{document}, where P denotes any polynomial with no zeros in the interval (-∞,-14]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\big (-\infty ,-\frac{1}{4}\big ]$$\end{document}, At′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^{\prime }_t$$\end{document} represents the adjoint of the differential operator At≡Dt(t2-1)Dt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_t\equiv D_t (t^2 -1) D_t$$\end{document}, the distribution g has compact support on (1,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1,\infty )$$\end{document} and u is an unknown distribution on (1,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1,\infty )$$\end{document}.
引用
收藏
相关论文
共 44 条
[1]  
Dattoli G(2007)Operational methods and differential equations with applications to initial-value problems Appl. Math. Comput. 184 979-1001
[2]  
Srivastava HM(1943)On the representation of an arbitrary function by an integral involving Legendre’s function with a complex index Dokl. AN SSSR 39 279-283
[3]  
Zhukovsky K(1987)On the convolution theorem of the Mehler-Fock-transform for a class of generalized functions (I) Math. Nachr. 131 107-117
[4]  
Fock VA(1988)On the convolution theorem of the Mehler-Fock-transform for a class of generalized functions (II) Math. Nachr. 136 119-129
[5]  
Glaeske H-J(1998)Operational calculi for Kontorovich-Lebedev and Mehler-Fock transforms on distributions with compact support Rev. Colombiana Mat. 32 81-92
[6]  
Hess A(2019)Abelian theorems for distributional Kontorovich-Lebedev and Mehler-Fock transforms of general order Banach J. Math. Anal. 13 524-537
[7]  
Glaeske H-J(2020)Abelian theorems for Laplace and Mehler-Fock transforms of generalized functions Filomat 34 3655-3662
[8]  
Hess A(1997)Operational method for solving integral equations with Gauss’s hypergeometric function as a kernel Internat. J. Math. Statist. Sci. 6 179-200
[9]  
González BJ(1992)On the Mehler-Fock transform of generalized functions Bull. Soc. Roy. Sci. Liège 61 315-327
[10]  
Negrín ER(2000)Convolution for the Mehler-Fock transform of generalized functions Integral Transforms Spec. Funct. 9 257-270