Optimal bandwidth selection for multivariate kernel deconvolution density estimation

被引:0
作者
Élie Youndjé
Martin T. Wells
机构
[1] Université de Rouen,Laboratoire de Mathématiques Raphaël Salem
[2] Cornell University,Department of Social Statistics
来源
TEST | 2008年 / 17卷
关键词
Density estimation; Deconvolution; Cross-validation; Asymptotic optimality; 62F03; 62E17; 62P25;
D O I
暂无
中图分类号
学科分类号
摘要
Assume we have i.i.d. replications from the mismeasured random vector Y=X+ε, where X and ε are mutually independent. We consider a data-driven bandwidth, based on a cross-validation ideas, for multivariate kernel deconvolution estimator of the density of X. The proposed data-driven bandwidth selection method is shown to be asymptotically optimal. As a by-product of the proof of this result, we show that the average squared error, the integrated squared error, and the mean integrated squared error are asymptotically equivalent error measures.
引用
收藏
页码:138 / 162
页数:24
相关论文
共 31 条
[11]  
Hall P(1985)Optimal bandwidth selection in nonparametric regression function estimation Ann Stat 13 1465-1481
[12]  
Fan J(1999)Data-driven deconvolution J Nonparametric Stat 10 343-373
[13]  
Fan J(1986)Convergence properties of an empirical error criterion for multivariate density estimation J Multivar Anal 19 1-13
[14]  
Hall P(1987)A comparison of cross-validation techniques in density estimation Ann Stat 15 152-162
[15]  
Hall P(1986)Random approximations to some measures of accuracy in nonparametric curve estimation J Multivar Anal 20 91-113
[16]  
Härdle W(1991)Multivariate probability density deconvolution for stationary random processes IEEE Trans Inf Theory 37 1105-1115
[17]  
Marron JS(1993)Asymptotic normality for deconvolution estimators of multivariate densities of stationary processes J Multivar Anal 44 47-68
[18]  
Hesse CH(1993)Strong consistency and rates for deconvolution of multivariate densities of stationary processes Stoch Process Appl 47 53-74
[19]  
Marron JS(1982)Empirical choice of histograms and kernel density estimators Scand J Stat Theory Appl 9 65-78
[20]  
Marron JS(1990)Deconvoluting kernel density estimators Statistics 21 169-184