Sharp Trudinger-Moser inequalities with monomial weights

被引:0
作者
Nguyen Lam
机构
[1] University of British Columbia and The Pacific Institute for the Mathematical Sciences,Department of Mathematics
来源
Nonlinear Differential Equations and Applications NoDEA | 2017年 / 24卷
关键词
Trudinger-Moser inequalities; Monomial weights; Best constants; Critical growth; Exact growth condition; Primiary 35A23; Secondary 26D15; 46E35; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we will study the Trudinger-Moser inequalities with the monomial weight x1A1...xNAN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| x_{1}\right| ^{A_{1}}...\left| x_{N}\right| ^{A_{N}}$$\end{document} in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb {R} ^{N}$$\end{document} with A1≥0,...,AN≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{1}\ge 0,..., A_{N}\ge 0$$\end{document}. Moreover, we investigate the Trudinger-Moser inequalities on both domains of finite and infinite volume. More importantly, we will exhibit the best constants for our results. In the particular case A1=⋯=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{1}=\cdots =$$\end{document}AN=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{N}=0$$\end{document}, we recover many results about the Trudinger-Moser inequalities without weight established in the literature.
引用
收藏
相关论文
共 30 条
[1]  
Adachi S(1999)Trudinger type inequalities in Proc. Am. Math. Soc. 128 2051-2057
[2]  
Tanaka K(1988) and their best exponents Ann. of Math. (2) 128 385-398
[3]  
Adams DR(1997)A sharp inequality of J. Moser for higher order derivatives Rev. Mat. Univ. Complut. Madrid 10 443-469
[4]  
Brezis H(2013)Blow-up solutions of some nonlinear elliptic problems Commun. Partial Differ. Equ. 38 135-154
[5]  
Vázquez JL(2013)Regularity of stable solutions up to dimension 7 in domains of double revolution J. Differ. Equ. 255 4312-4336
[6]  
Cabré X(1997)Sobolev and isoperimetric inequalities with monomial weights Abstr. Appl. Anal. 2 301-315
[7]  
Ros-Oton X(2015)Laplacian equations in J. Eur. Math. Soc. 17 819-835
[8]  
Cabré X(2017) with critical growth Commun. Pure Appl. Anal. 16 973-997
[9]  
Ros-Oton X(2017)Trudinger-Moser inequality on the whole plane with the exact growth condition J. Geom. Anal. 27 300-334
[10]  
do Ó JM(2008)Equivalence of sharp Trudinger-Moser-Adams inequalities Indiana Univ. Math. J. 57 451-480