Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors

被引:0
|
作者
Andrew V. Anzalone
Luke W. Koblan
David R. Liu
机构
[1] Broad Institute of Harvard and MIT,Merkin Institute of Transformative Technologies in Healthcare
[2] Harvard University,Department of Chemistry and Chemical Biology
[3] Harvard University,Howard Hughes Medical Institute
来源
Nature Biotechnology | 2020年 / 38卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The development of new CRISPR–Cas genome editing tools continues to drive major advances in the life sciences. Four classes of CRISPR–Cas-derived genome editing agents—nucleases, base editors, transposases/recombinases and prime editors—are currently available for modifying genomes in experimental systems. Some of these agents have also moved rapidly into the clinic. Each tool comes with its own capabilities and limitations, and major efforts have broadened their editing capabilities, expanded their targeting scope and improved editing specificity. We analyze key considerations when choosing genome editing agents and identify opportunities for future improvements and applications in basic research and therapeutics.
引用
收藏
页码:824 / 844
页数:20
相关论文
共 50 条
  • [31] Controllable genome editing with split-engineered base editors
    Berrios, Kiara N.
    Evitt, Niklaus H.
    DeWeerd, Rachel A.
    Ren, Diqiu
    Luo, Meiqi
    Barka, Aleksia
    Wang, Tong
    Bartman, Caroline R.
    Lan, Yemin
    Green, Abby M.
    Shi, Junwei
    Kohli, Rahul M.
    NATURE CHEMICAL BIOLOGY, 2021, 17 (12) : 1262 - 1270
  • [32] Synergistic Engineering of CRISPR-Cas Nucleases Enables Robust Mammalian Genome Editing
    Chen, Yang-Can
    Hu, Yan-Ping
    Wang, Xin-Ge
    Luo, Sheng-Qiu
    Tian, Shin-Shay
    Zhao, Xiao-Ping
    Li, Wei
    MOLECULAR THERAPY, 2022, 30 (04) : 459 - 459
  • [33] Efficient Generation and Correction of Mutations in Human iPS Cells Utilizing mRNAs of CRISPR Base Editors and Prime Editors
    Sueruen, Duran
    Schneider, Aksana
    Mircetic, Jovan
    Neumann, Katrin
    Lansing, Felix
    Paszkowski-Rogacz, Maciej
    Haenchen, Vanessa
    Lee-Kirsch, Min Ae
    Buchholz, Frank
    GENES, 2020, 11 (05)
  • [34] Synergistic engineering of CRISPR-Cas nucleases enables robust mammalian genome editing
    Chen, Yangcan
    Hu, Yanping
    Wang, Xinge
    Luo, Shengqiu
    Yang, Ning
    Chen, Yi
    Li, Zhikun
    Zhou, Qi
    Li, Wei
    INNOVATION, 2022, 3 (04):
  • [35] Enhancing Genome Editing with Engineered CRISPR Nucleases
    Walton, Russell T.
    Sousa, Alexander A.
    Welch, Moira M.
    Tak, Y. Esther
    Hsu, Jonathan Y.
    Clement, Kendell
    Horng, Joy E.
    Pinello, Luca
    Joung, J. Keith
    Kleinstiver, Benjamin
    MOLECULAR THERAPY, 2019, 27 (04) : 104 - 105
  • [36] Base Editors and Prime Editors Begin to Realize Their Clinical Promise
    Labant M.
    Genetic Engineering and Biotechnology News, 2023, 43 (06): : 28 - 30+32
  • [37] HDAC inhibitors improve CRISPR-Cas9 mediated prime editing and base editing
    Liu, Nan
    Zhou, Lifang
    Lin, Guifeng
    Hu, Yun
    Jiao, Yaoge
    Wang, Yanhong
    Liu, Jingming
    Yang, Shengyong
    Yao, Shaohua
    MOLECULAR THERAPY NUCLEIC ACIDS, 2022, 29 : 36 - 46
  • [38] Off-Target Editing by CRISPR-Guided DNA Base Editors
    Park, SeHee
    Beal, Peter A.
    BIOCHEMISTRY, 2019, 58 (36) : 3727 - 3734
  • [39] Cas12n nucleases, early evolutionary intermediates of type V CRISPR, comprise a distinct family of miniature genome editors
    Chen, Weizhong
    Ma, Jiacheng
    Wu, Zhaowei
    Wang, Zhipeng
    Zhang, Hongyuan
    Fu, Wenhan
    Pan, Deng
    Shi, Jin
    Ji, Quanjiang
    MOLECULAR CELL, 2023, 83 (15) : 2768 - +
  • [40] CRISPR-Cas9 base editors and their current role in human therapeutics
    Lahr, Walker S.
    Sipe, Christopher J.
    Skeate, Joseph G.
    Webber, Beau R.
    Moriarity, Branden S.
    CYTOTHERAPY, 2023, 25 (03) : 270 - 276