Symmetries, solutions and conservation laws for the (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2+1)$$\end{document} filtration-absorption model

被引:0
作者
T. M. Garrido
R. de la Rosa
E. Recio
M. S. Bruzón
机构
[1] University of Cádiz,Department of Mathematics
关键词
Filtration-absorption model; -dimensional equation; Lie symmetries; Travelling wave solutions; Conservation laws;
D O I
10.1007/s10910-018-0955-9
中图分类号
学科分类号
摘要
In this paper we have considered the (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2+1)$$\end{document} filtration-absorption equation that models the flow of impure water in a water-absorbing fissured porous medium. We have applied the Lie method to get the Lie symmetries classification with respect to the parameter of the equation and we have interpreted them. Additionally, we have obtained solutions for the travelling wave case. Lastly, all low-order conservation laws have been obtained by using the direct method of multipliers. Its associated conserved integral is also interpreted.
引用
收藏
页码:1301 / 1313
页数:12
相关论文
共 21 条
  • [1] Anco SC(2002)Direct construction method for conservation laws of partial differential equations, part i: examples of conservation law classifications Eur. J. Appl. Math. 13 545-566
  • [2] Bluman GW(2002)Direct construction method for conservation laws of partial differential equations, part ii: general treatment Eur. J. Appl. Math. 13 567-585
  • [3] Anco SC(2018)Conservation laws, symmetries, and line soliton solutions of generalized kp and boussinesq equations with p-power nonlinearities in two dimensions Theor. Math. Phys. 196 1241-1259
  • [4] Bluman GW(2000)Self-similar intermediate asymptotics for a degenerate parabolic filtration-absorption equation Proc. Natl. Acad. Sci. 97 9844-9848
  • [5] Anco SC(2002)On the stability of a class of self-similar solutions to the filtration-absorption equation Eur. J. Appl. Math. 13 179-194
  • [6] Gandarias ML(2017)Lie symmetries and equivalence transformations for the Barenblatt–Gilman model J. Comput. Appl. Math. 318 253-258
  • [7] Recio E(2010)A new time dependent approach for solving electrochemical interfaces part i: theoretical considerations using lie group analysis J. Math. Chem. 48 856-875
  • [8] Barenblatt GI(2015)Conservation laws and solutions of a quantum drift-diffusion model for semiconductors Int. J. Non-Linear Mech. 77 69-73
  • [9] Bertsch M(undefined)undefined undefined undefined undefined-undefined
  • [10] Chertock AE(undefined)undefined undefined undefined undefined-undefined