A modified Kähler–Ricci flow

被引:0
作者
Zhou Zhang
机构
[1] University of Michigan at Ann Arbor,Department of Mathematics
来源
Mathematische Annalen | 2009年 / 345卷
关键词
Line Bundle; Volume Form; Cohomology Class; Differential Inequality; Projective Manifold;
D O I
暂无
中图分类号
学科分类号
摘要
In this note, we study a Kähler–Ricci flow modified from the classic version. In the non-degenerate case, strong convergence at infinite time is achieved. The main focus should be on degenerate case, where some partial results are presented.
引用
收藏
页码:559 / 579
页数:20
相关论文
共 10 条
[1]  
Cao H.(1985)Deformation of Kaehler metrics to Kaehler-Einstein metrics on compact Kaehler manifolds Invent. Math. 81 359-372
[2]  
Hamilton R.S.(1982)Three-manifolds with positive Ricci curvature J. Differ. Geom. 17 255-306
[3]  
Kawamata Y.(1984)The cone of curves of algebraic varieties Ann. Math. (2) 119 603-633
[4]  
Kawamata Y.(1982)A generalization of Kodaira-Ramanujam’s vanishing theorem Math. Ann. 261 43-46
[5]  
Kolodziej S.(2005)The complex Monge-Ampère equation and pluripotential theory Mem. Am. Math. Soc. 178 x+64-386
[6]  
Kolodziej S.(2008)Hölder continuity of solutions to the complex Monge-Ampère equation with the right-hand side in Math. Ann. 342 379-653
[7]  
Song J.(2007): the case of compact Kähler manifolds Invent. Math. 170 609-133
[8]  
Tian G.(1988)The Kähler–Ricci flow on surfaces of positive Kodaira dimension Math. Ann. 281 123-411
[9]  
Tsuji H.(1978)Existence and degeneration of Kaehler-Einstein metrics on minimal algebraic varieties of general type Comm. Pure Appl. Math. 31 339-undefined
[10]  
Yau S.T.(undefined)On the Ricci curvature of a compact Kaehler manifold and the complex Monge-Ampère equation I undefined undefined undefined-undefined