Homogeneous G-structures

被引:0
作者
Alfonso Giuseppe Tortorella
Luca Vitagliano
Ori Yudilevich
机构
[1] KU Leuven,Department of Mathematics
[2] DipMat,undefined
[3] Università degli Studi di Salerno,undefined
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2020年 / 199卷
关键词
G-structures; Contact structures; Atiyah algebroid; 53C10 (Primary); 53D10;
D O I
暂无
中图分类号
学科分类号
摘要
The theory of G-structures provides us with a unified framework for a large class of geometric structures, including symplectic, complex and Riemannian structures, as well as foliations and many others. Surprisingly, contact geometry—the “odd-dimensional counterpart” of symplectic geometry—does not fit naturally into this picture. In this paper, we introduce the notion of a homogeneous G-structure, which encompasses contact structures, as well as some other interesting examples that appear in the literature.
引用
收藏
页码:2357 / 2380
页数:23
相关论文
共 16 条
[1]  
Cappelletti-Montano B(2013)A survey on cosymplectic geometry Rev. Math. Phys. 25 1343002-80
[2]  
De Nicola A(2017)Remarks on contact and Jacobi geometry SIGMA Symmetry Integrability Geom. Methods Appl. 13 59-450
[3]  
Yudin I(1959)Some global properties of contact structures Ann. Math. 69 421-896
[4]  
Bruce AJ(2014)Symplectic and Poisson geometry on Adv. Math. 264 864-1332
[5]  
Grabowska K(2019)-manifolds Int. Math. Res. Not. 9 1317-561
[6]  
Grabowski J(2011)The local structure of generalized contact bundles Cent. Eur. J. Math. 16 485-undefined
[7]  
Gray JW(2018)Normalizers and self-normalizing subgroups II J. Symplectic Geom. undefined undefined-undefined
[8]  
Guillemin V(2019)Dirac-Jacobi bundles Math. Z. undefined undefined-undefined
[9]  
Miranda E(undefined)Holomorphic Jacobi manifolds and holomorphic contact groupoids undefined undefined undefined-undefined
[10]  
Pires AR(undefined)undefined undefined undefined undefined-undefined