Large nilpotent subgroups of finite simple groups

被引:0
作者
Vdovin E.P.
机构
关键词
Finite Group; Algebraic Group; Weyl Group; Sylow Subgroup; Maximal Torus;
D O I
10.1007/BF02681614
中图分类号
学科分类号
摘要
Orders and the structure of large nilpotent subgroups in all finite simple groups are determined. In particular, it is proved that if G is a finite simple non-Abelian group, and N is some of its nilpotent subgroups, then |N| 2 < |G|. © 2000 Kluwer Academic/Plenum Publishers.
引用
收藏
页码:301 / 312
页数:11
相关论文
共 18 条
[1]  
Carter R.W., Centralizers of semisimple elements in finite groups of Lie type, Proc. London Math. Soc., III. Ser., 37, 3, pp. 491-507, (1978)
[2]  
Carter R.W., Centralizers of semisimple elements in the finite classical groups, Proc. London Math. Soc., III. Ser., 42, 1, pp. 1-41, (1981)
[3]  
Carter R.W., Fong P., The Sylow 2-subgroups of the finite classical groups, J. Alg., 1, 2, pp. 139-151, (1964)
[4]  
Weir A.J., Sylow p-subgroups of the classical groups over finite fields with characteristic prime to p, Proc. Am. Math. Soc., 6, 4, pp. 529-533, (1955)
[5]  
Wong W.J., Twisted wreath product and Sylow 2-subgroups of classical simple groups, Math. Z., 97, 5, pp. 406-424, (1967)
[6]  
Kabanov V.V., Kondratyev A.S., Sylow 2-Subgroups of Finite Groups [in Russian], (1979)
[7]  
Zenkov V.I., Mazurov V.D., The intersection of Sylow subgroups in finite groups, Algebra Logika, 35, 4, pp. 424-432, (1996)
[8]  
Mann A., Soluble subgroups of symmetric and linear groups, Israel J. Math., 55, 2, pp. 162-172, (1986)
[9]  
Segev Y., (1985)
[10]  
Robinson D.J.S., A Course in the Theory of Groups, (1996)