Quantum entropy for the fuzzy sphere and its monopoles

被引:0
作者
Nirmalendu Acharyya
Nitin Chandra
Sachindeo Vaidya
机构
[1] Indian Institute of Science,Centre for High Energy Physics
[2] The Institute of Mathematical Sciences,undefined
来源
Journal of High Energy Physics | / 2014卷
关键词
Solitons Monopoles and Instantons; Non-Commutative Geometry;
D O I
暂无
中图分类号
学科分类号
摘要
Using generalized bosons, we construct the fuzzy sphere SF2 and monopoles on SF2 in a reducible representation of SU(2). The corresponding quantum states are naturally obtained using the GNS-construction. We show that there is an emergent nonabelian unitary gauge symmetry which is in the commutant of the algebra of observables. The quantum states are necessarily mixed and have non-vanishing von Neumann entropy, which increases monotonically under a bistochastic Markov map. The maximum value of the entropy has a simple relation to the degeneracy of the irreps that constitute the reducible representation that underlies the fuzzy sphere.
引用
收藏
相关论文
共 50 条
[31]   Critical behaviour of the fuzzy sphere [J].
O'Connor, Denjoe ;
Dolan, Brian P. ;
Vachovski, Martin .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (12)
[32]   Mutual information on the fuzzy sphere [J].
Sabella-Garnier, Philippe .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (02)
[33]   A note on the fuzzy sphere area spectrum, black-hole luminosity and the quantum nature of spacetime [J].
Santos, Victor ;
Silva, C. A. S. ;
Almeida, C. A. S. .
EPL, 2015, 110 (03)
[34]   Yang-Mills field from fuzzy sphere quantum Kaluza-Klein model [J].
Liu, Chengcheng ;
Majid, Shahn .
JOURNAL OF HIGH ENERGY PHYSICS, 2024, (07)
[35]   Quantum energies and tensorial central charges of confined monopoles [J].
Burke, David ;
Wimmer, Robert .
JOURNAL OF HIGH ENERGY PHYSICS, 2011, (10)
[37]   Geometric Dirac operator on the fuzzy sphere [J].
Evelyn Lira-Torres ;
Shahn Majid .
Letters in Mathematical Physics, 2022, 112
[38]   Bifundamental Fuzzy 2-Sphere and Fuzzy Killing Spinors [J].
Nastase, Horatiu ;
Papageorgakis, Constantinos .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2010, 6
[39]   Geometric Dirac operator on the fuzzy sphere [J].
Lira-Torres, Evelyn ;
Majid, Shahn .
LETTERS IN MATHEMATICAL PHYSICS, 2022, 112 (01)
[40]   Charged particles in monopole background on fuzzy sphere [J].
Imaanpur, Ali .
LETTERS IN MATHEMATICAL PHYSICS, 2007, 80 (03) :273-283