Stability and L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L_{\infty }}$$\end{document}-Gain Analysis for Positive Switched Systems with Time-Varying Delay Under State-Dependent Switching

被引:0
作者
Shuo Li
Zhengrong Xiang
机构
[1] Nanjing University of Science and Technology,School of Automation
关键词
Positive systems; Switched systems; Exponential stability; -gain performance; Time-varying delay; State-dependent switching;
D O I
10.1007/s00034-015-0099-0
中图分类号
学科分类号
摘要
This paper investigates the problems of stability and L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L_\infty }$$\end{document}-gain analysis for a class of positive switched systems with time-varying delay. Attention is focused on designing a state-dependent switching rule such that the system satisfies a prescribed L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L_\infty }$$\end{document}-gain performance level, where the proposed scheme does not require the switching instants to be known in advance. By constructing an appropriate co-positive type Lyapunov–Krasovskii functional, sufficient conditions for exponential stability with L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L_\infty }$$\end{document}-gain performance of the underlying systems are derived. Furthermore, the stability along the switching surface is analyzed. Finally, two examples are presented to demonstrate the effectiveness of the proposed method.
引用
收藏
页码:1045 / 1062
页数:17
相关论文
共 97 条
  • [1] Branicky MS(1998)A unified framework for hybrid control: model and optimal control theory IEEE Trans. Autom. Control 43 31-45
  • [2] Borkar VS(2013)Robust stability and stabilization of uncertain linear positive systems via integral linear constraints: Int. J. Robust Nonlinear Control 23 1932-1954
  • [3] Mitter SK(2013)-gain and ISA Trans. 52 768-774
  • [4] Briat C(2010)-gain characterization Kybernetika 5 870-889
  • [5] Cheng J(2014)Finite-time Inf. Sci. 272 173-184
  • [6] Zhu H(2009) control for a class of Markovian jump systems with mode-dependent time-varying delays via new Lyapunov functional IEEE Control Syst. Mag. 29 28-93
  • [7] Zhong S(2008)Finite-time boundedness and stabilization of switched linear systems IEEE Trans. Circuits Syst. I Regul. Pap. 55 1382-1391
  • [8] Zeng Y(2003)Delay-dependent exponential stabilization of positive 2D switched state-delayed systems in the Roesser model IEEE Trans. Autom. Control 48 988-1001
  • [9] Dong X(2007)Hybrid dynamical systems Int. J. Appl. Math. Comput. Sci. 17 471-475
  • [10] Du H(2009)Optimal PMW control of switched-capacitor DC–DC power converters via model transformation and enhancing control techniques Automatica 45 1943-1947