Co-inoculation of Arbuscular Mycorrhizal Fungi and the Plant Growth-Promoting Rhizobacteria Improve Growth and Photosynthesis in Tobacco Under Drought Stress by Up-Regulating Antioxidant and Mineral Nutrition Metabolism

被引:0
|
作者
Naheeda Begum
Ling Wang
Husain Ahmad
Kashif Akhtar
Rana Roy
Muhammad Ishfaq Khan
Tuanjie Zhao
机构
[1] Nanjing Agricultural University,National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement
[2] Northwest A&F University,College of Horticulture
[3] Guangxi University,State Key Laboratory for Conservation and Utilization of Subtropical Agro
[4] Sylhet Agricultural University,bio
[5] the University of Agriculture Peshawar,resources, College of Life Science and Technology
来源
Microbial Ecology | 2022年 / 83卷
关键词
AMF; PGPR; Tobacco; Drought stress; Secondary metabolism;
D O I
暂无
中图分类号
学科分类号
摘要
Drought stress is a major environmental concern that limits crop growth on a large scale around the world. Significant efforts are required to overcome this issue in order to improve crop production. Therefore, the exciting role of beneficial microorganisms under stress conditions needs to be deeply explored. In this study, the role of two biotic entities, i.e., Arbuscular mycorrhizal fungi (AMF, Glomus versiforme) and plant growth-promoting rhizobacteria (PGPR, Bacillus methylotrophicus) inoculation in drought tolerance of tobacco (Nicotiana tabacum L.), was investigated. The present results showed that drought stress considerably reduced tobacco plant’s growth and their physiological attributes. However, the plants co-inoculated with AMF and PGPR showed higher drought tolerance by bringing up significant improvement in the growth and biomass of tobacco plants. Moreover, the co-inoculation of AMF and PGPR considerably increased chlorophyll a, b, total chlorophylls, carotenoids, photosynthesis, and PSII efficiency by 96.99%, 76.90%, and 67.96% and 56.88%, 53.22%, and 33.43% under drought stress conditions, respectively. Furthermore, it was observed that drought stress enhanced lipid peroxidation and electrolyte leakage. However, the co-inoculation of AMF and PGPR reduced the electrolyte leakage and lipid peroxidation and significantly enhanced the accumulation of phenols and flavonoids by 57.85% and 71.74%. Similarly, the antioxidant enzymatic activity and the plant nutrition status were also considerably improved in co-inoculated plants under drought stress. Additionally, the AMF and PGPR inoculation also enhanced abscisic acid (ABA) and indole-3-acetic acid (IAA) concentrations by 67.71% and 54.41% in the shoots of tobacco plants. The current findings depicted that inoculation of AMF and PGPR (alone or in combination) enhanced the growth and mitigated the photosynthetic alteration with the consequent up-regulation of secondary metabolism, osmolyte accumulation, and antioxidant system.
引用
收藏
页码:971 / 988
页数:17
相关论文
共 50 条
  • [1] Co-inoculation of Arbuscular Mycorrhizal Fungi and the Plant Growth-Promoting Rhizobacteria Improve Growth and Photosynthesis in Tobacco Under Drought Stress by Up-Regulating Antioxidant and Mineral Nutrition Metabolism
    Begum, Naheeda
    Wang, Ling
    Ahmad, Husain
    Akhtar, Kashif
    Roy, Rana
    Khan, Muhammad Ishfaq
    Zhao, Tuanjie
    MICROBIAL ECOLOGY, 2022, 83 (04) : 971 - 988
  • [2] Co-inoculation of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria can mitigate the effects of drought in wheat plants (Triticum durum)
    Ikan, Chayma
    Ben-Laouane, Raja
    Ouhaddou, Redouane
    Ghoulam, Cherki
    Meddich, Abdelilah
    PLANT BIOSYSTEMS, 2023, 157 (04): : 907 - 919
  • [3] Co-inoculation of mycorrhizal fungi and plant growth-promoting rhizobacteria improve growth, biochemical and physiological attributes in Dracocephalum kotschyi Boiss. under water deficit stress
    Gasemi, Saeid
    Mahdavikia, Hassan
    Rezaei-Chiyaneh, Esmaeil
    Banaei-Asl, Farzad
    Dolatabadian, Aria
    Sadeghpour, Amir
    PEERJ, 2023, 11
  • [4] Co-Inoculation of Arbuscular Mycorrhizal Fungi and Plant Growth-Promoting Rhizobacteria Improve Growth, Biochemical Attributes, and Nutritional Status of Potato (Solanum tuberosum L.) Minitubers
    Roghayeh Barzegari Barogh
    Davoud Hassanpanah
    Behrouz Esmaeilpour
    Sodabeh Jahanbakhsh Godehkahriz
    Sepideh Kalateh Jari
    Journal of Soil Science and Plant Nutrition, 2023, 23 : 3447 - 3460
  • [5] Co-Inoculation of Arbuscular Mycorrhizal Fungi and Plant Growth-Promoting Rhizobacteria Improve Growth, Biochemical Attributes, and Nutritional Status of Potato (Solanum tuberosum L.) Minitubers
    Barzegari Barogh, Roghayeh
    Hassanpanah, Davoud
    Esmaeilpour, Behrouz
    Godehkahriz, Sodabeh Jahanbakhsh
    Kalateh Jari, Sepideh
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2023, 23 (03) : 3447 - 3460
  • [6] The effects of species diversity and co-inoculation with plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi on the Chinese medicinal plant Codonopsis pilosula "Ludangshen"
    Han, Yanyan
    Cao, Yongqing
    Bai, Bianxia
    Ren, Jiahong
    INDUSTRIAL CROPS AND PRODUCTS, 2025, 228
  • [7] Promoting growth and production of sunchoke (Helianthus tuberosus) by co-inoculation with phosphate solubilizing bacteria and arbuscular mycorrhizal fungi under drought
    Nacoon, Sabaiporn
    Seemakram, Wasan
    Ekprasert, Jindarat
    Jogloy, Sanun
    Kuyper, Thomas W.
    Mongkolthanaruk, Wiyada
    Riddech, Nuntavun
    Somdee, Theerasak
    Boonlue, Sophon
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [8] Co-inoculation with a bacterium and arbuscular mycorrhizal fungi improves root colonization, plant mineral nutrition, and plant growth of a Cyperaceae plant in an ultramafic soil
    Bourles, Alexandre
    Guentas, Linda
    Charvis, Cesar
    Gensous, Simon
    Majorel, Clarisse
    Crossay, Thomas
    Cavaloc, Yvon
    Burtet-Sarramegna, Valerie
    Jourand, Philippe
    Amir, Hamid
    MYCORRHIZA, 2020, 30 (01) : 121 - 131
  • [9] Co-inoculation with a bacterium and arbuscular mycorrhizal fungi improves root colonization, plant mineral nutrition, and plant growth of a Cyperaceae plant in an ultramafic soil
    Alexandre Bourles
    Linda Guentas
    César Charvis
    Simon Gensous
    Clarisse Majorel
    Thomas Crossay
    Yvon Cavaloc
    Valérie Burtet-Sarramegna
    Philippe Jourand
    Hamid Amir
    Mycorrhiza, 2020, 30 : 121 - 131
  • [10] Effects of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria on growth and reactive oxygen metabolism of tomato fruits under low saline conditions
    Zhou, Wei
    Zhang, Mengmeng
    Tao, Kezhang
    Zhu, Xiancan
    BIOCELL, 2022, 46 (12) : 2575 - 2582