We consider a planar interface between strongly-segregated homopolymers subjected to steady shear in the plane of the interface. We develop a constitutive equation for stress relaxation in an inhomogeneous system for chains obeying Rouse dynamics. Using this equation, the interfacial viscosity for a symmetric blend is found to be \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\zeta {b^2}/(6x{\upsilon _0})$$
\end{document} in agreement with a scaling prediction due to de Gennes, where \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\zeta $$
\end{document} is the bead friction coefficient, b is the segment length, υ is the segment volume and χ is the Flory-Huggins interaction parameter driving the phase separation. We generalize our results to asymmetric blends and describe a phenomenological extension to entangled melts.