Microwave-assisted rapid synthesis of tetragonal Cu2SnS3 nanoparticles for solar photovoltaics

被引:0
作者
Devendra Tiwari
Tapas K. Chaudhuri
T. Shripathi
U. Deshpande
V. G. Sathe
机构
[1] Charotar University of Science and Technology Changa,Dr. K. C. Patel Research and Development Centre
[2] University Grants Commission-Department of Atomic Energy Consortium for Scientific Research,undefined
来源
Applied Physics A | 2014年 / 117卷
关键词
Solar Cell; Power Conversion Efficiency; Absorber Layer; Thin Film Solar Cell; CZTS Nanocrystals;
D O I
暂无
中图分类号
学科分类号
摘要
A simple and rapid process for the synthesis of Cu2SnS3 (CTS) nanoparticles by microwave heating of metal–organic precursor solution is described. X-ray diffraction and Raman spectroscopy confirm the formation of tetragonal CTS. X-ray photoelectron spectroscopy indicates the presence of Cu, Sn, S in +1, +4, −2 oxidation states, respectively. Transmission electron microscopy divulges the formation of crystalline tetragonal CTS nanoparticles with sizes ranging 2–25 nm. Diffuse reflectance spectroscopy in the 300–2,400 nm wavelength range suggests a band gap of 1.1 eV. Pellets of CTS nanoparticles show p-type conduction and the carrier transport in temperature range of 250–425 K is thermally activated with activation energy of 0.16 eV. Thin film solar cell (TFSC) with architecture: graphite/Cu2SnS3/ZnO/ITO/SLG is fabricated by drop-casting dispersion of CTS nanoparticles which delivered a power conversion efficiency of 0.135 % with open circuit voltage, short circuit current and fill factor of 220 mV, 1.54 mA cm−2, 0.40, respectively.
引用
收藏
页码:1139 / 1146
页数:7
相关论文
共 174 条
[1]  
Scragg JJ(2008)Controlled synthesis of CuInS Physica Status Solidi (b) 245 1772-undefined
[2]  
Dale PJ(2009), Cu Environ. Sci. Technol. 43 2072-undefined
[3]  
Peter LM(2010)SnS Eur. J. Inorg. Chem. 1 17-undefined
[4]  
Zoppi G(2011) and Cu Sol. Energy Mater. Sol. Cells 95 1421-undefined
[5]  
Forbes I(2013)ZnSnS Prog. Photovol. Res. Appl. 21 72-undefined
[6]  
Wadia C(2013) nano-structures: insight into the universal phase selectivity mechanism Adv. Mater. 3 34-undefined
[7]  
Alivisatos AP(2010)undefined J. Am. Chem. Soc. 132 17384-undefined
[8]  
Kammen DM(2012)undefined J. Am. Chem. Soc. 134 15644-undefined
[9]  
Todorov TK(2012)undefined Prog. Photovolt. Res. Appl. 20 512-undefined
[10]  
Mitzi DB(2011)undefined J. Vac. Sci. Technol. A 29 051203-undefined