Homogenization of solutions of initial boundary value problems for parabolic systems

被引:0
作者
Yu. M. Meshkova
T. A. Suslina
机构
[1] St. Petersburg State University,Chebyshev Laboratory
[2] St. Petersburg State University,Department of Physics
来源
Functional Analysis and Its Applications | 2015年 / 49卷
关键词
homogenization of periodic differential operators; parabolic systems; initial boundary value problems; effective operator; corrector; operator error estimates;
D O I
暂无
中图分类号
学科分类号
摘要
Let [inline-graphic not available: see fulltext] be a bounded C1,1 domain. In [inline-graphic not available: see fulltext] we consider strongly elliptic operators AD,ɛ and AN,ɛ given by the differential expression b(D)*g(x/ɛ)b(D), ɛ > 0, with Dirichlet and Neumann boundary conditions, respectively. Here g(x) is a bounded positive definite matrix-valued function assumed to be periodic with respect to some lattice and b(D) is a first-order differential operator. We find approximations of the operators exp(−AD,ɛt) and exp(−AN,ɛt) for fixed t > 0 and small ɛ in the L2 → L2 and L2 → H1 operator norms with error estimates depending on ɛ and t. The results are applied to homogenize the solutions of initial boundary value problems for parabolic systems.
引用
收藏
页码:72 / 76
页数:4
相关论文
共 13 条
[1]  
Suslina T A(2004)undefined Funkts. Anal. Prilozhen. 38 86-90
[2]  
Zhikov V V(2006)undefined Russ. J. Math. Phys. 13 224-237
[3]  
Pastukhova S E(2010)undefined Math. Model. Nat. Phenom. 5 390-447
[4]  
Suslina T A(2009)undefined Algebra i Analiz 21 3-60
[5]  
Vasilevskaya E S(2012)undefined Algebra i Analiz 24 1-103
[6]  
Vasilevskaya E S(2013)undefined Algebra i Analiz 25 125-177
[7]  
Suslina T A(2012)undefined Algebra i Analiz 24 139-177
[8]  
Meshkova Yu M(2013)undefined Mathematika 59 463-476
[9]  
Pakhnin M A(2013)undefined SIAM J. Math. Anal. 45 3453-3493
[10]  
Suslina T A(2014)undefined Funkts. Anal. Prilozhen. 48 88-94