Processing, spark plasma sintering, and mechanical behavior of alumina/titanium composites

被引:0
作者
C. F. Gutierrez-Gonzalez
E. Fernandez-Garcia
A. Fernandez
R. Torrecillas
S. Lopez-Esteban
机构
[1] Centro de Investigación en Nanomateriales y Nanotecnología (CINN) [Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Oviedo (UO)-Principado de Asturias (PA)],Instituto de Ciencia de Materiales de Madrid (ICMM)
[2] Moscow State University of Technology (STANKIN),undefined
[3] Consejo Superior de Investigaciones Científicas (CSIC),undefined
来源
Journal of Materials Science | 2014年 / 49卷
关键词
Spark Plasma Sinter; Crack Extension; Metallic Particle; Indentation Load; Titanium Particle;
D O I
暂无
中图分类号
学科分类号
摘要
This paper focuses on the study of the processing and mechanical properties, (flaw tolerance and R-curve behavior) of alumina–titanium ceramic–metal composites produced by spark plasma sintering. In order to obtain homogenously dispersed composites, a rheological study was carried out by measuring the flow behavior in different conditions of solid content, amount of dispersant and shear stress. It has been found that, with the suitable conditions (80 wt% solids and 3 wt% deflocculant), a ceramic–metal homogeneously dispersed (Al2O3–Ti) composite can be obtained. After sintering, the composites were mechanically tested and the cermet showed an important improvement in the flaw tolerance and R-curve behavior when compared with the monolithic material. It has been demonstrated by scanning electronic microscopy that this improvement is a consequence of the reinforcement mechanisms provided by the metallic particles that interact with the crack producing a notable increase in toughness up to ~8 MPa m1/2.
引用
收藏
页码:3823 / 3830
页数:7
相关论文
共 50 条
[41]   Synthesis of NiTi by Low Electrothermal Loss Spark Plasma Sintering [J].
G. Majkic ;
N. Chennoufi ;
Y.C. Chen ;
K. Salama .
Metallurgical and Materials Transactions A, 2007, 38 :2523-2530
[42]   Study on fabrication and mechanism in of porous metals by spark plasma sintering [J].
Wang Kun ;
Fu Zhengyi ;
Wang Weimin ;
Wang Yucheng ;
Zhang Jinyong ;
Zhang Qingjie .
Journal of Materials Science, 2007, 42 :302-306
[43]   Spark plasma sintering of ductile ceramic particles: study of LiF [J].
R. Marder ;
C. Estournès ;
G. Chevallier ;
S. Kalabukhov ;
R. Chaim .
Journal of Materials Science, 2014, 49 :5237-5245
[44]   On fabrication of functionally graded thermoelectric materials by spark plasma sintering [J].
L. P. Bulat ;
I. A. Drabkin ;
A. V. Novotel’nova ;
V. B. Osvenskii ;
Yu. N. Parkhomenko ;
D. A. Pshenai-Severin ;
A. I. Sorokin ;
I. A. Nefedova .
Technical Physics Letters, 2014, 40 :972-975
[45]   Joining of silicon carbide ceramic by hybrid spark plasma sintering [J].
O. Yu. Sorokin ;
M. L. Vaganova ;
S. S. Solntsev ;
I. V. Osin .
Russian Journal of Applied Chemistry, 2015, 88 :839-845
[46]   Full Densification of Molybdenum Powders Using Spark Plasma Sintering [J].
B. Mouawad ;
M. Soueidan ;
D. Fabrègue ;
C. Buttay ;
V. Bley ;
B. Allard ;
H. Morel .
Metallurgical and Materials Transactions A, 2012, 43 :3402-3409
[47]   Numerical model for sparking and plasma formation during spark plasma sintering of ceramic compacts [J].
R. Marder ;
C. Estournès ;
G. Chevallier ;
R. Chaim .
Journal of Materials Science, 2015, 50 :4636-4645
[48]   Effect of Spark-Plasma-Sintering Conditions on Tensile Properties of Aluminum Matrix Composites Reinforced with Multiwalled Carbon Nanotubes (MWCNTs) [J].
B. Chen ;
H. Imai ;
J. Umeda ;
M. Takahashi ;
K. Kondoh .
JOM, 2017, 69 :669-675
[49]   Synthesis and properties of graphene and graphene/carbon nanotube-reinforced soft magnetic FeCo alloy composites by spark plasma sintering [J].
Amar J. Albaaji ;
Elinor G. Castle ;
Mike J. Reece ;
Jeremy P. Hall ;
Sam L. Evans .
Journal of Materials Science, 2016, 51 :7624-7635
[50]   Microstructure and mechanical behavior of reaction hot-pressed titanium silicide and titanium silicide-based alloys and composites [J].
R. Mitra .
Metallurgical and Materials Transactions A, 1998, 29 :1629-1641