Fixed point theorems for (p, q)-quasi-contraction mappings in cone metric spaces

被引:0
作者
Wajdi Chaker
Abdelaziz Ghribi
Aref Jeribi
Bilel Krichen
机构
[1] Higher Institute of Applied Biology Medenine,Department of Mathematics
[2] Higher Institute of Business Administration of Sfax,Department of Mathematics
[3] Faculty of Science of Sfax,undefined
[4] Preparatory Engineering Institute,undefined
来源
Chinese Annals of Mathematics, Series B | 2016年 / 37卷
关键词
Fixed points; (; , ; )-Quasi-contractions; Cone metric space; 54E40; 47H09; 47H10; 54H25;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, the authors introduce the concept of (p, q)-quasi-contraction mapping in a cone metric space. We prove the existence and uniqueness of a fixed point for a (p, q)-quasi-contraction mapping in a complete cone metric space. The results of this paper generalize and unify further fixed point theorems for quasi-contraction, convex contraction mappings and two-sided convex contraction of order 2.
引用
收藏
页码:211 / 220
页数:9
相关论文
共 33 条
  • [1] Alghamdi M. A.(2011)Fixed point theorems for convex contraction mappings on cone metric spaces Math. Comput. Modelling 54 2020-2026
  • [2] Alnafei S. H.(1922)Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales Fund. Math. 3 133-181
  • [3] Radenović S.(1972)Fixed point theorems Rend. Acad. Bulgare Sc. 25 727-730
  • [4] Shahzad N.(1974)A generalization of Banach’s contraction principle Proc. Amer. Math. Soc. 45 267-273
  • [5] Banach S.(1979)Quasicontractions on metric spaces Proc. Amer. Math. Soc. 75 321-325
  • [6] Chatterjee S. K.(2007)Cone metric spaces and fixed point theorems of contractive mappings J. Math. Anal. Appl. 332 1468-1476
  • [7] Ćirić Lj. B.(2009)Quasi-contraction on a cone metric space Appl. Math. Lett. 22 728-731
  • [8] Fisher B.(1982)Some fixed point theorems for convex contraction mappings and mappings with convex diminishing diameters. I Ann. Mat. Pura Appl. 130 89-104
  • [9] Huang L. G.(2007)More maps for which Demonstratio Math. 40 671-680
  • [10] Zhang X.(2010)( Comput. Math. Appl. 59 3148-3159