Special Fourier integral operators of types I and II with function-variable symbols: definition, relation to metaplectic transform, and Heisenberg’s uncertainty principles

被引:0
作者
Ga Wang
Zhichao Zhang
机构
[1] University of Science and Technology of China,School of Computer Science
[2] Nanjing University of Information Science and Technology,School of Mathematics and Statistics
[3] Nanjing University of Information Science and Technology,Center for Applied Mathematics of Jiangsu Province
[4] Nanjing University of Information Science and Technology,Jiangsu International Joint Laboratory on System Modeling and Data Analysis
来源
Journal of Pseudo-Differential Operators and Applications | 2023年 / 14卷
关键词
Fourier integral operators; Heisenberg’s uncertainty principle; Metaplectic transform; Modulation spaces; 35S30; 42A38; 42B10; 70H15;
D O I
暂无
中图分类号
学科分类号
摘要
This study devotes to Heisenberg’s uncertainty principles for Fourier integral operators of types I and II with function-variable symbols, i.e., the symbol σ∈S1⊗vs∞(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma \in S_{1\otimes v_s}^{\infty }(\mathbb {R}^N)$$\end{document} of the type I Fourier integral operator is only w\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{w}$$\end{document}-dependent and the symbol τ∈S1⊗vs∞(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \in S_{1\otimes v_s}^{\infty }(\mathbb {R}^N)$$\end{document} of the type II Fourier integral operator is only y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{y}$$\end{document}-dependent. These two special Fourier integral operators are abbreviated as the FIO-I-FV and FIO-II-FV, respectively. We disclose an equivalence relation between the FIO-I-FV and the classical metaplectic transform, as well as the FIO-II-FV and the metaplectic transform, based on which we employ various versions of Heisenberg’s uncertainty principles for the metaplectic transform, ranging from the general metaplectic transform of real-valued functions to some specific (e.g., the orthogonal, the orthonormal, the minimum eigenvalue commutative, the maximum eigenvalue commutative) metaplectic transforms of complex-valued functions, in the establishment of the corresponding results for the FIO-I-FV and FIO-II-FV.
引用
收藏
相关论文
共 37 条
  • [1] Cordero E(2013)Wiener algebras of Fourier integral operators J. Math. Pures Appl. 99 219-233
  • [2] Gröchenig K(2015)Integral representations for the class of generalized metaplectic operators J. Fourier Anal. Appl. 21 694-714
  • [3] Nicola F(2022)Wigner analysis of operators. Part I: Pseudodifferential operators and wave fronts Appl. Comput. Harmon. Anal. 58 85-123
  • [4] Rodino L(1997)The uncertainty principle: a mathematical survey J. Fourier Anal. Appl. 3 207-238
  • [5] Cordero E(2004)Time-frequency analysis on modulation spaces Appl. Comput. Harmon. Anal. 16 1-18
  • [6] Nicola F(2008), Ann. Inst. Fourier 58 2279-2314
  • [7] Rodino L(2020)Banach algebras of pseudodifferential operators and their almost diagonalization Mathematics 1685 1-15
  • [8] Cordero E(2014)The Abstr. Appl. Anal. 2014 1-9
  • [9] Rodino L(2002)-dimensional uncertainty principle for the free metaplectic transformation J. Fourier Anal. Appl. 8 245-258
  • [10] Folland GB(1973)Uncertainty principles for Wigner-Ville distribution associated with the linear canonical transforms SIAM J. Appl. Math. 25 193-212