Ionization of Coulomb Systems in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^3}$$\end{document} by Time Periodic Forcings of Arbitrary Size

被引:0
作者
O. Costin
J. L. Lebowitz
S. Tanveer
机构
[1] Ohio State University,Department of Mathematics
[2] Rutgers University,Department of Mathematics
[3] Rutgers University,Department of Physics
关键词
Nontrivial Solution; Point Spectrum; Essential Singularity; Coulomb System; Fredholm Alternative;
D O I
10.1007/s00220-010-1023-x
中图分类号
学科分类号
摘要
We analyze the long time behavior of solutions of the Schrödinger equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${i\psi_t=(-\Delta-b/r+V(t,x))\psi}$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x\in\mathbb{R}^3}$$\end{document}, r =  |x|, describing a Coulomb system subjected to a spatially compactly supported time periodic potential V(t, x) =  V(t +  2π/ω, x) with zero time average.
引用
收藏
页码:681 / 738
页数:57
相关论文
共 58 条
  • [1] Agmon S.(1975)Spectral properties of Schrödinger operators and scattering theory Ann. Scuola. Norm. Sup. Pisa, Ser. IV 2 151-218
  • [2] Agmon S.(1992)Analyticity properties in scattering and spectral theory for schrodinger operators with long-range radial potentials Duke Math. J. 68 337-399
  • [3] Bourgain J.(1999)Growth of Sobolev norms in linear Schrödinger equatios with quasi-periodic potential Commun. Math. Phys. 204 207-240
  • [4] Bourgain J.(1999)On growth of Sobolev norms in linear Schrödinger equations with smooth time-dependent potential J. Anal Math. 77 315-348
  • [5] Bourgain J.(1993)Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations Geom. Funct. Anal 3 107-156
  • [6] Costin O.(2000)Exact results for the ionization of a model quantum system J. Phys. A: Math. Gen. 33 1-9
  • [7] Lebowitz J.L.(2001)Evolution of a model quantum system under time periodic forcing: conditions for complete ionization Commun. Math. Phys. 221 1-26
  • [8] Rokhlenko A.(2001)Resonance theory for Schrödinger operators Commun. Math. Phys. 224 133-152
  • [9] Costin O.(2004)Time asymptotics of the Schrödinger wave function in time-periodic potentials J. Stat. Phys. 116 283-310
  • [10] Costin R.D.(2008)Ionization in a one-dimensional dipole model Rev. Math. Phys. 7 835-872