Statistical analysis of tipping pathways in agent-based models

被引:0
作者
Luzie Helfmann
Jobst Heitzig
Péter Koltai
Jürgen Kurths
Christof Schütte
机构
[1] Freie Universität Berlin,Institute of Mathematics
[2] Zuse Institute Berlin,Department of Complexity Science
[3] Potsdam Institute for Climate Impact Research,Department of Physics
[4] Humboldt University,undefined
来源
The European Physical Journal Special Topics | 2021年 / 230卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Agent-based models are a natural choice for modeling complex social systems. In such models simple stochastic interaction rules for a large population of individuals on the microscopic scale can lead to emergent dynamics on the macroscopic scale, for instance a sudden shift of majority opinion or behavior. Here we are introducing a methodology for studying noise-induced tipping between relevant subsets of the agent state space representing characteristic configurations. Due to a large number of interacting individuals, agent-based models are high-dimensional, though usually a lower-dimensional structure of the emerging collective behaviour exists. We therefore apply Diffusion Maps, a non-linear dimension reduction technique, to reveal the intrinsic low-dimensional structure. We characterize the tipping behaviour by means of Transition Path Theory, which helps gaining a statistical understanding of the tipping paths such as their distribution, flux and rate. By systematically studying two agent-based models that exhibit a multitude of tipping pathways and cascading effects, we illustrate the practicability of our approach.
引用
收藏
页码:3249 / 3271
页数:22
相关论文
共 129 条
  • [1] Arenas A(2008)Synchronization in complex networks Phys. Rep. 469 93-153
  • [2] Díaz-Guilera A(2012)Tipping points in open systems: bifurcation, noise-induced and rate-dependent examples in the climate system Philos. Trans. R Soc. A Math. Phys. Eng. Sci. 370 1166-1184
  • [3] Kurths J(2015)Reactive flows and unproductive cycles in irreversible Markov chains Eur. Phys. J. Spec. Top. 224 2369-2387
  • [4] Moreno Y(2016)Variable bandwidth diffusion kernels Appl. Comput. Harmon. Anal. 40 68-96
  • [5] Zhou C(2016)Risk of multiple interacting tipping points should encourage rapid CO2 emission reduction Nat. Clim. Change 6 520-525
  • [6] Ashwin P(2014)Flows in complex networks: theory, algorithms, and application to Lennard–Jones cluster rearrangement J. Stat. Phys. 156 427-454
  • [7] Wieczorek S(2007)Complex contagions and the weakness of long ties Am. J. Sociol. 113 702-734
  • [8] Vitolo R(2001)Boundaries, hierarchies and networks in complex systems Int. J. Innov. Manag. 5 135-147
  • [9] Cox P(1999)Complexity and post-modernism: understanding complex systems South Afr. J. Philos. 18 258-274
  • [10] Banisch R(2006)Diffusion Maps Appl. Comput. Harmon. Anal. 21 5-30