The clinical significance and oncogenic function of LRRFIP1 in pancreatic cancer

被引:3
作者
Li, Jinping [1 ]
Tuo, Dayun [1 ,2 ]
Guo, Gunan [1 ,3 ]
Gao, Yan [1 ]
Gan, Jinfeng [4 ,5 ]
机构
[1] Guilin Med Univ, Sch Preclin Med, Dept Histol & Embryol, Guilin 541199, Guangxi, Peoples R China
[2] Liuzhou Peoples Hosp, Dept Pathol, Liuzhou 545006, Guangxi, Peoples R China
[3] Zhaoqing Med Coll, Sch Stomatol, Zhaoqing 526020, Guangdong, Peoples R China
[4] Guilin Med Univ, Guangxi Key Lab Tumor Immunol & Microenvironm Regu, Guilin 541199, Guangxi, Peoples R China
[5] Guilin Med Univ, Affiliated Hosp 2, Dept Gastroenterol, Guilin 541199, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Pancreatic cancer; Prognosis; LRRFIP1; AKT; GSK-3; beta; beta-catenin; GROWTH; CELLS; GCF2/LRRFIP1; SENSITIVITY; INHIBITION; EXPRESSION; GCF2; RHOA;
D O I
10.1007/s12672-024-00977-3
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose Pancreatic cancer is a lethal malignancy with a grim prognosis. Previous studies have proven that Leucine Rich Repeat of Flightless-1 Interacting Protein 1 (LRRFIP1) plays a pivotal role in cell biological processes, while its clinical significance and function in pancreatic cancer remain to be elucidated. Hence, we aimed to explore the roles and mechanisms of LRRFIP1 in pancreatic cancer. Methods The expression of LRRFIP1 in pancreatic cancer tissues and its clinical significance for pancreatic cancer were analyzed by immunohistochemistry assay and bioinformatic analysis. The influences of LRRFIP1 on the proliferation and migration of pancreatic cancer cells were assessed in vitro. The underlying mechanisms of LRRFIP1 in pancreatic cancer progression were explored using gene set enrichment analysis (GSEA) and molecular experiments. Results The results showed that LRRFIP1 expression was significantly upregulated in pancreatic cancer tissues compared to the normal tissues, and such upregulation was associated with poor prognosis of patients with pancreatic cancer. GSEA revealed that LRRFIP1 upregulation was significantly associated with various cancer-associated signaling pathways, including PI3K/AKT signaling pathway and Wnt pathway. Furthermore, LRRFIP1 was found to be associated with the infiltration of various immune cells. Functionally, LRRFIP1 silencing suppressed cell proliferation somewhat and inhibited migration substantially. Further molecular experiments indicated that LRRFIP1 silencing inactivated the AKT/GSK-3 beta/beta-catenin signaling axis. Conclusion Taken together, LRRFIP1 is associated with tumorigenesis, immune cell infiltration, and prognosis in pancreatic cancer, which suggests that LRRFIP1 may be a potential biomarker and therapeutic target for pancreatic cancer.
引用
收藏
页数:15
相关论文
共 32 条
[1]   GCF2/LRRFIP1 promotes colorectal cancer metastasis and liver invasion through integrin-dependent RhoA activation [J].
Ariake, Kyohei ;
Ohtsuka, Hideo ;
Motoi, Fuyuhiko ;
Douchi, Daisuke ;
Oikawa, Masaya ;
Rikiyama, Toshiki ;
Fukase, Koji ;
Katayose, Yu ;
Egawa, Shinichi ;
Unno, Michiaki .
CANCER LETTERS, 2012, 325 (01) :99-107
[2]   TLR4/MyD88-induced CD11b+Gr-1intF4/80+ non-migratory myeloid cells suppress Th2 effector function in the lung [J].
Arora, M. ;
Poe, S. L. ;
Oriss, T. B. ;
Krishnamoorthy, N. ;
Yarlagadda, M. ;
Wenzel, S. E. ;
Billiar, T. R. ;
Ray, A. ;
Ray, P. .
MUCOSAL IMMUNOLOGY, 2010, 3 (06) :578-593
[3]   Spatiotemporal Dynamics of Intratumoral Immune Cells Reveal the Immune Landscape in Human Cancer [J].
Bindea, Gabriela ;
Mlecnik, Bernhard ;
Tosolini, Marie ;
Kirilovsky, Amos ;
Waldner, Maximilian ;
Obenauf, Anna C. ;
Angell, Helen ;
Fredriksen, Tessa ;
Lafontaine, Lucie ;
Berger, Anne ;
Bruneval, Patrick ;
Fridman, Wolf Herman ;
Becker, Christoph ;
Pages, Franck ;
Speicher, Michael R. ;
Trajanoski, Zlatko ;
Galon, Jerome .
IMMUNITY, 2013, 39 (04) :782-795
[4]  
Clough E, 2016, METHODS MOL BIOL, V1418, P93, DOI 10.1007/978-1-4939-3578-9_5
[5]   Transcriptional Down-regulation of Epidermal Growth Factor (EGF) Receptors by Nerve Growth Factor (NGF) in PC12 Cells [J].
Cohen, Gadi ;
Ettinger, Keren ;
Lecht, Shimon ;
Lelkes, Peter I. ;
Lazarovici, Philip .
JOURNAL OF MOLECULAR NEUROSCIENCE, 2014, 54 (03) :574-585
[6]   Modulation of TLR Signaling by Multiple MyD88-Interacting Partners Including Leucine-Rich Repeat Fli-I-Interacting Proteins [J].
Dai, Penggao ;
Jeong, Sun Yong ;
Yu, Yanbao ;
Leng, Taohua ;
Wu, Weidong ;
Xie, Ling ;
Chen, Xian .
JOURNAL OF IMMUNOLOGY, 2009, 182 (06) :3450-3460
[7]   Silencing of LRRFIP1 reverses the epithelial-mesenchymal transition via inhibition of the Wnt/β-catenin signaling pathway [J].
Douchi, Daisuke ;
Ohtsuka, Hideo ;
Ariake, Kyohei ;
Masuda, Kunihiro ;
Kawasaki, Shuhei ;
Kawaguchi, Kei ;
Fukase, Koji ;
Oikawa, Masaya ;
Motoi, Fuyuhiko ;
Naitoh, Takeshi ;
Katayose, Yu ;
Egawa, Shinichi ;
Unno, Michiaki .
CANCER LETTERS, 2015, 365 (01) :132-140
[8]   GSVA: gene set variation analysis for microarray and RNA-Seq data [J].
Haenzelmann, Sonja ;
Castelo, Robert ;
Guinney, Justin .
BMC BIOINFORMATICS, 2013, 14
[9]   QUANTITATIVE REAL-TIME PCR-BASED ANALYSIS OF GENE EXPRESSION [J].
Jozefczuk, J. ;
Adjaye, J. .
METHODS IN ENZYMOLOGY, VOL 500: METHODS IN SYSTEMS BIOLOGY, 2011, 500 :99-109
[10]   Innate Immune Training of Granulopoiesis Promotes Anti-tumor Activity [J].
Kalafati, Lydia ;
Kourtzelis, Ioannis ;
Schulte-Schrepping, Jonas ;
Li, Xiaofei ;
Hatzioannou, Aikaterini ;
Grinenko, Tatyana ;
Hagag, Eman ;
Sinha, Anupam ;
Has, Canan ;
Dietz, Sevina ;
Domingues, Antonio Miguel de Jesus ;
Nati, Marina ;
Sormendi, Sundary ;
Neuwirth, Ales ;
Chatzigeorgiou, Antonios ;
Ziogas, Athanasios ;
Lesche, Mathias ;
Dahl, Andreas ;
Henry, Ian ;
Subramanian, Pallavi ;
Wielockx, Ben ;
Murray, Peter ;
Mirtschink, Peter ;
Chung, Kyoung-Jin ;
Schultze, Joachim L. ;
Netea, Mihai G. ;
Hajishengallis, George ;
Verginis, Panayotis ;
Mitroulis, Ioannis ;
Chavakis, Triantafyllos .
CELL, 2020, 183 (03) :771-+