Chip Removal. Urban Renewal Revisited

被引:0
作者
Aksenov V. [1 ]
Kokhas K. [1 ]
机构
[1] ITMO University, St.Petersburg
关键词
Adjacency Matrix; Chebyshev Polynomial; Urban Renewal; Outgoing Edge; Adjacency Matrice;
D O I
10.1007/s10958-015-2528-9
中图分类号
学科分类号
摘要
We describe a new combinatorial-algebraic transformation on graphs which we call the “chip removal.” It generalizes the well-known urban renewal trick of Propp and Kuperberg. The chip removal is useful in calculations of the determinants of adjacency matrices and matching numbers of graphs. A beautiful example of applying this technique is a theorem on removing 4-contact chips, which generalizes Kuo’s graphical condensation method. Numerous examples are given. Bibliography: 6 titles. © 2015, Springer Science+Business Media New York.
引用
收藏
页码:809 / 825
页数:16
相关论文
共 5 条
[1]  
Aksenov V., Kokhas K., Domino tilings and determinants, J. Math. Sci., 200, 6, pp. 647-653, (2014)
[2]  
Ciucu M., Enumeration of perfect matchings in graphs with reflective symmetry, J. Combin. Theory Ser. A, 77, 1, pp. 67-97, (1997)
[3]  
Kuo E., Application of graphical condensation for enumerating matchings, Theoret. Comput. Sci., 319, pp. 29-57, (2004)
[4]  
Propp J., Generalized domino-shuffling, Theoret. Comput. Sci., 303, 2-3, pp. 267-301, (2003)
[5]  
Rara H.M., Reduction procedures for calculating the determinant of the adjacency matrix of some graphs and the singularity of square planar grids, Discrete Math., 151, pp. 213-219, (1996)