Existence of one weak solution for p(x)-biharmonic equations with Navier boundary conditions

被引:0
作者
S. Heidarkhani
G. A. Afrouzi
S. Moradi
G. Caristi
Bin Ge
机构
[1] Razi University,Department of Mathematics, Faculty of Sciences
[2] University of Mazandaran,Department of Mathematics, Faculty of Mathematical Sciences
[3] University of Messina,Department S.E.A.M.
[4] Harbin Engineering University,Department of Applied Mathematics
来源
Zeitschrift für angewandte Mathematik und Physik | 2016年 / 67卷
关键词
Navier condition; (; )-biharmonic operator; Existence result; Variational methods; 35J20; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
We study the existence of at least one weak solution for a class of elliptic Navier boundary value problems involving the p(x)-biharmonic operator. Our technical approach is based on variational methods. In addition, an example to illustrate our results is given.
引用
收藏
相关论文
共 47 条
[1]  
Afrouzi G.A.(2014)Steklov problem involving the Electron. J. Differ. Equ. 2014 1-11
[2]  
Hadjian A.(2013)( Adv. Nonlinear Anal. 2 427-441
[3]  
Heidarkhani S.(2015))-Laplacian Electron. J. Differ. Equ. 2015 1-14
[4]  
Afrouzi G.A.(2009)Some remarks for one-dimensional mean curvature problems through a local minimization principle Nonlinear Anal. TMA. 71 4916-4926
[5]  
Hadjian A.(2014)Existence of infinitely many solutions for quasilinear problems with a Complex Var. Elliptic Equ. 59 271-284
[6]  
Bisci G.M.(2015)( Adv. Nonlinear Anal. 4 135-151
[7]  
Afrouzi G.A.(2001))-biharmonic operator J. Math. Anal. Appl. 263 424-446
[8]  
Shokooh S.(2016)On the spectrum of a fourth order elliptic equation with variable exponent Math. Meth. Appl. Sci. 39 1480-1492
[9]  
Ayoujil A.(2013)Multiple solutions of Commun. Pure Appl. Anal. (CPAA) 12 1393-1406
[10]  
El Amrouss A.R.(2015)-biharmonic equations with Navier boundary conditions Zeitschrift für angewandte Mathematik und Physik 66 1007-1021