Integration Of A Higher-Order Nonlinear SchröDinger System with a Self-Consistent Source in the Class of Periodic Functions

被引:0
|
作者
A. B. Yakhshimuratov
机构
[1] Urgench branch of Tashkent University of Information Technologies named after Muhammad al-Khwarizmi,
来源
关键词
Dirac operator; spectral data; nonlinear Schrödinger equation; Dubrovin—Trubowitz system of equations; self-consistent source;
D O I
暂无
中图分类号
学科分类号
摘要
We use the inverse spectral method to integrate a higher-order nonlinear Schrödinger system with a self-consistent source in the class of periodic functions.
引用
收藏
页码:137 / 149
页数:12
相关论文
共 50 条
  • [21] Rogue waves on the double-periodic background for a nonlinear Schrödinger equation with higher-order effects
    Hai-Qiang Zhang
    Rui Liu
    Fa Chen
    Nonlinear Dynamics, 2023, 111 : 645 - 654
  • [22] Rogue Waves of the Higher-Order Dispersive Nonlinear Schrdinger Equation
    王晓丽
    张卫国
    翟保国
    张海强
    Communications in Theoretical Physics, 2012, 58 (10) : 531 - 538
  • [23] Controllable rogue waves on the Jacobi-periodic background for the higher-order nonlinear Schrödinger equation
    Huang, Lili
    Yue, Yunfei
    NONLINEAR DYNAMICS, 2024, 112 (18) : 16339 - 16353
  • [24] On the Integration of the Higher Order Toda Lattice with a Self-Consistent Integral Type Source
    Babajanov, Bazar
    Ruzmetov, Murod
    CONTEMPORARY MATHEMATICS, 2023, 4 (04): : 684 - 701
  • [25] Some aspects of self-consistent higher-order interactions
    Sakamoto, Hideo
    XXII INTERNATIONAL SCHOOL ON NUCLEAR PHYSICS, NEUTRON PHYSICS AND APPLICATIONS, 2018, 1023
  • [26] A higher-order coupled nonlinear Schrödinger system: solitons, breathers, and rogue wave solutions
    Rui Guo
    Hui-Hui Zhao
    Yuan Wang
    Nonlinear Dynamics, 2016, 83 : 2475 - 2484
  • [27] Periodic attenuating oscillation between soliton interactions for higher-order variable coefficient nonlinear Schrödinger equation
    Xiaoyan Liu
    Wenjun Liu
    Houria Triki
    Qin Zhou
    Anjan Biswas
    Nonlinear Dynamics, 2019, 96 : 801 - 809
  • [28] THE KORTEWEG-DE VRIES EQUATION WITH A SELF-CONSISTENT SOURCE IN THE CLASS OF PERIODIC FUNCTIONS
    Khasanov, A. B.
    Yakhshimuratov, A. B.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2010, 164 (02) : 1008 - 1015
  • [29] The Korteweg-de Vries equation with a self-consistent source in the class of periodic functions
    A. B. Khasanov
    A. B. Yakhshimuratov
    Theoretical and Mathematical Physics, 2010, 164 : 1008 - 1015
  • [30] Localized Properties of Rogue Wave for a Higher-Order Nonlinear Schr?dinger Equation
    柳伟
    邱德勤
    贺劲松
    CommunicationsinTheoreticalPhysics, 2015, 63 (05) : 525 - 534