Anisotropic degenerate elliptic problem with a singular nonlinearity

被引:0
作者
Mohamed Amine Zouatini
Hichem Khelifi
Fares Mokhtari
机构
[1] University of Algiers,Department of Mathematics, Faculty of Sciences
[2] ENS-Kouba,Laboratory of Nonlinear Partial Differential Equations
[3] University of Algiers 1,Laboratory of Mathematical Analysis and Applications
来源
Advances in Operator Theory | 2023年 / 8卷
关键词
Anisotropic problem; Singular term; Degenerate elliptic equation; data; Fixed point theorem; 35J60; 35J70; 35B45; 35D30; 35B65;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the existence and regularity results for some anisotropic elliptic equations with degenerate coercivity and a singular right-hand side. The model problem is 0.1-∑i=1N∂i[|∂iu|pi-2∂iu(1+u)θ]=fuγinΩ,u=0on∂Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll}-\sum _{i=1}^{N} \partial _{i} \bigg [\frac{\vert \partial _{i}u\vert ^{p_{i}-2}\partial _{i}u}{(1+u)^{\theta }}\bigg ]=\frac{f}{u^{\gamma }} &{} \quad \hbox {in}\ \Omega , \\ u =0 &{} \quad \hbox {on}\ \partial \Omega , \end{array} \right. \end{aligned}$$\end{document}where Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is a bounded domain in RN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{N},$$\end{document}0<γ<1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\gamma < 1,$$\end{document}0≤θ≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le \theta \le 1$$\end{document} and 1<p1≤p2≤⋯≤pN.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p_{1}\le p_{2}\le \cdots \le p_{N}.$$\end{document} Our results will depend on the summability of f in some Lebesgue spaces, and on the values of γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} and θ.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta .$$\end{document}
引用
收藏
相关论文
共 33 条
  • [1] Alvino A(2003)Existence results for nonlinear elliptic equations with degenerate coercivity Ann. Mat. Pura Appl. IV. Ser. 182 53-79
  • [2] Boccardo L(2003)On some anisotropic reaction–diffusion systems with L1- data modeling the propagation of an epidemic disease Nonlinear Anal. 54 617-636
  • [3] Ferone V(2006)Some elliptic problems with degenerate coercivity Adv. Nonlinear Stud. 6 1-12
  • [4] Orsina L(1992)Nonlinear elliptic equations with right hand side measures Commun. Partial Differ. Equ. 17 189-258
  • [5] Bendahmane M(2010)Semilinear elliptic equations with singular nonlinearities Calc. Var. 37 363-380
  • [6] Langlais M(1988)Existence of bounded solutions for nonlinear elliptic unilateral problems Ann. Mat. Pura Appl. 152 183-196
  • [7] Saad M(2016)Existence and uniqueness for p-Laplace equations involving singular nonlinearities Nonlinear Differ. Equ. Appl. 23 1-18
  • [8] Boccardo L(2012)An elliptic problem with two singularities Asymptot. Anal. 78 1-10
  • [9] Boccardo L(2013)Nonlinear elliptic equations with singular nonlinearities Asymptot. Anal. 84 181-195
  • [10] Gallouet T(2009)Existence and regularity results for anisotropic elliptic problems Adv. Nonlinear Stud. 9 367-393