Combinatorial Algorithms for the Uniform-Cost Inverse 1-Center Problem on Weighted Trees

被引:0
作者
Kien Trung Nguyen
Huong Nguyen-Thu
Nguyen Thanh Hung
机构
[1] Can Tho University,Department of Mathematics, Teacher College
来源
Acta Mathematica Vietnamica | 2019年 / 44卷
关键词
Location problem; Inverse optimization problem; 1-Center problem; Tree; 90B10; 90B80; 90C27;
D O I
暂无
中图分类号
学科分类号
摘要
Inverse 1-center problem on a network is to modify the edge lengths or vertex weights within certain bounds so that the prespecified vertex becomes an (absolute) 1-center of the perturbed network and the modifying cost is minimized. This paper focuses on the inverse 1-center problem on a weighted tree with uniform cost of edge length modification, a generalization for the analogous problem on an unweighted tree (Alizadeh and Burkard, Discrete Appl. Math. 159, 706–716, 2011). To solve this problem, we first deal with the weighted distance reduction problem on a weighted tree. Then, the weighted distances balancing problem on two rooted trees is introduced and efficiently solved. Combining these two problems, we derive a combinatorial algorithm with complexity of O(n2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(n^{2})$\end{document} to solve the inverse 1-center problem on a weighted tree if there exists no topology change during the edge length modification. Here, n is the number of vertices in the tree. Dropping this condition, the problem is solvable in O(n2c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(n^{2}\mathbf {c})$\end{document} time, where c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbf {c}$\end{document} is the compressed depth of the tree. Finally, some special cases of the problem with improved complexity, say linear time, are also discussed.
引用
收藏
页码:813 / 831
页数:18
相关论文
共 46 条
  • [1] Alizadeh B(2011)Combinatorial algorithms for inverse absolute and vertex 1-center location problems on trees Networks 58 190-200
  • [2] Burkard RE(2011)Uniform-cost inverse absolute and vertex center location problems with edge length variations on trees Discrete Appl. Math. 159 706-716
  • [3] Alizadeh B(2009)Inverse 1-center location problems with edge length augmentation on trees Computing 86 331-343
  • [4] Burkard RE(1980)An algorithm for large zero-one knapsack problems Oper. Res. 28 1130-1154
  • [5] Alizadeh B(2011)Inverse p-median problems with variable edge lengths Math. Methods Oper. Res. 73 263-280
  • [6] Burkard RE(2010)Inverse median location problems with variable coordinates CEJOR Cent. Eur. J. Oper. Res. 18 365-381
  • [7] Pferschy U(2004)Inverse median problems Discrete Optim. 1 23-39
  • [8] Balas E(2008)The inverse 1-median problem on a cycle Discrete Optim. 5 242-253
  • [9] Zemel E(2010)The inverse Fermat-Weber problem European J. Oper. Res. 206 11-17
  • [10] Baroughi Bonab F(1999)The complexity analysis of inverse center location problem J. Global Optim. 15 213-218