Optimal bounds for Neuman-Sándor mean in terms of the geometric convex combination of two Seiffert means

被引:0
|
作者
Hua-Ying Huang
Nan Wang
Bo-Yong Long
机构
[1] Anhui University,School of Mathematical Science
关键词
Neuman-Sándor mean; the first Seiffert mean; the second Seiffert mean; 26E60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we find the least value α and the greatest value β such that the double inequality Pα(a,b)T1−α(a,b)<M(a,b)<Pβ(a,b)T1−β(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^{\alpha}(a,b)T^{1-\alpha}(a,b)< M(a,b)< P^{\beta}(a,b)T^{1-\beta}(a,b) $$\end{document} holds for all a,b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a,b>0$\end{document} with a≠b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a\neq b$\end{document}, where M(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M(a,b)$\end{document}, P(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P(a,b)$\end{document}, and T(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T(a,b)$\end{document} are the Neuman-Sándor, the first and second Seiffert means of two positive numbers a and b, respectively.
引用
收藏
相关论文
共 50 条
  • [41] Optimal Bounds for Neuman Means in Terms of Harmonic and Contraharmonic Means
    He, Zai-Yin
    Chu, Yu-Ming
    Wang, Miao-Kun
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [42] Optimal bounds for two Seiffert-like means by arithmetic mean and harmonic mean
    Ling Zhu
    Branko Malešević
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117
  • [43] Optimal bounds for two Seiffert-like means by arithmetic mean and harmonic mean
    Zhu, Ling
    Malesevic, Branko
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (02)
  • [44] Bounds for Toader Mean in Terms of Arithmetic and Second Seiffert Means
    He, Zai-Yin
    Jiang, Yue-Ping
    Chug, Yu-Ming
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2019, 10 (03): : 561 - 570
  • [45] Optimal Two Parameter Bounds for the Seiffert Mean
    Sun, Hui
    Song, Ying-Qing
    Chu, Yu-Ming
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [46] SHARP BOUNDS FOR NEUMAN MEANS IN TERMS OF GEOMETRIC, ARITHMETIC AND QUADRATIC MEANS
    Guo, Zhi-Jun
    Zhang, Yan
    Chu, Yu-Ming
    Song, Ying-Qing
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (02): : 301 - 312
  • [47] Sharp power mean bounds for two Sándor–Yang means
    Xiao-Hong He
    Wei-Mao Qian
    Hui-Zuo Xu
    Yu-Ming Chu
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 2627 - 2638
  • [48] Sharp Bounds for the Weighted Geometric Mean of the First Seiffert and Logarithmic Means in terms of Weighted Generalized Heronian Mean
    Matejicka, Ladislav
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [49] Optimal bounds for Seiffert-like elliptic integral mean by harmonic, geometric, and arithmetic means
    Fan Zhang
    Weimao Qian
    Hui Zuo Xu
    Journal of Inequalities and Applications, 2022
  • [50] Optimal bounds for Seiffert-like elliptic integral mean by harmonic, geometric, and arithmetic means
    Zhang, Fan
    Qian, Weimao
    Xu, Hui Zuo
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)