Some radius problems related to a certain subclass of analytic functions

被引:0
作者
Oh Sang Kwon
Young Jae Sim
Nak Eun Cho
H. M. Srivastava
机构
[1] Kyungsung University,Department of Mathematics
[2] Pukyung National University,Department of Applied Mathematics
[3] University of Victoria,Department of Mathematics and Statistics
来源
Acta Mathematica Sinica, English Series | 2014年 / 30卷
关键词
Analytic functions; univalent functions; starlike functions; functions of bounded real positive real part; radius problems; 30C45; 30C55;
D O I
暂无
中图分类号
学科分类号
摘要
For real parameters α and β such that 0 ≤ α < 1 < β, we denote by S(α, β) the class of normalized analytic functions which satisfy the following two-sided inequality: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha < \Re \left( {\frac{{zf'(z)}} {{f(z)}}} \right) < \beta ,z \in \mathbb{U} $\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{U}$\end{document} denotes the open unit disk. We find a sufficient condition for functions to be in the class S(α, β) and solve several radius problems related to other well-known function classes.
引用
收藏
页码:1133 / 1144
页数:11
相关论文
共 18 条
  • [1] Amer A(2011)On radius problems in the class of univalent functions Internat. J. Pure Appl. Math. 73 471-476
  • [2] Darus M(2011)On a subclass of strongly starlike functions Appl. Math. Lett. 24 27-32
  • [3] Aouf M K(2009)Notes on radius problems of certain univalent functions Gen. Math. 17 5-12
  • [4] Dziok J(2011)Notes on new class for certain analytic functions RIMS Kôkyûroku 1772 21-25
  • [5] Sokół J(1975)A subordination for convex functions of order J. London Math. Soc. 9 530-536
  • [6] Kobashi H(2010)Some radius problems for certain classes of analytic functions with fixed second coefficients Nonl. Funct. Anal. Appl. 15 79-85
  • [7] Kuroki K(1993)Uniformly convex functions and a corresponding class of starlike functions Proc. Amer. Math. Soc. 118 189-196
  • [8] Owa S(2009)Coefficient estimates in a class of strongly starlike functions Kyungpook Math. J. 49 349-353
  • [9] Kuroki K(2009)Radius problems in the class Appl. Math. Comput. 214 569-573
  • [10] Owa S(2010)* Fract. Calc. Appl. Anal. 13 553-560