The S-matrix of 2D type 0B string theory. Part I. Perturbation theory revisited

被引:0
作者
Bruno Balthazar
Victor A. Rodriguez
Xi Yin
机构
[1] University of Chicago,Enrico Fermi Institute & Kadanoff Center for Theoretical Physics
[2] Princeton University,Joseph Henry Laboratories
[3] Harvard University,Jefferson Physical Laboratory
来源
Journal of High Energy Physics | / 2023卷
关键词
Gauge-Gravity Correspondence; Matrix Models; String Duality;
D O I
暂无
中图分类号
学科分类号
摘要
We study the perturbative S-matrix of closed strings in the two-dimensional type 0B string theory from the worldsheet perspective, by directly integrating correlation functions of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 Liouville theory. The latter is computed numerically using recurrence relations for super-Virasoro conformal blocks. We show that the tree level 3- and 4-point amplitudes are in agreement with the proposed dual matrix quantum mechanics. The non-perturbative aspects of the duality will be analyzed in a companion paper.
引用
收藏
相关论文
共 49 条
[1]  
Takayanagi T(2003) = 1 JHEP 07 064-undefined
[2]  
Toumbas N(1992) = 1 Nucl. Phys. B 375 119-undefined
[3]  
Di Francesco P(2019) = 1 JHEP 04 145-undefined
[4]  
Kutasov D(2003) = 1 JHEP 11 012-undefined
[5]  
Balthazar B(1996) = 1 Phys. Lett. B 380 49-undefined
[6]  
Rodriguez VA(1997) = 1 Nucl. Phys. B 496 451-undefined
[7]  
Yin X(2002) = 1 Nucl. Phys. B 635 215-undefined
[8]  
DeWolfe O(2011)undefined JHEP 02 090-undefined
[9]  
Rashkov RC(2007)undefined JHEP 03 032-undefined
[10]  
Stanishkov M(1994)undefined Phys. Rev. D 50 R6041-undefined