A note on quaternion matrices and split quaternion matrix pencils

被引:0
作者
Istkhar Ali
机构
[1] Indian Institute of Technology Indore,School of Basic Sciences, Discipline of Mathematics
来源
Journal of Applied Mathematics and Computing | 2018年 / 58卷
关键词
Quaternion matrix; Split quaternion matrix; Left and right eigenvalues; Gerschgorin theorems; 12E15; 34L15; 15A18; 15A66;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, localization theorems for left and right eigenvalues of a quaternion matrix are presented. Some differences between quaternion matrices and split quaternion matrices are summarized. A counter example for Gerschgorin theorems for left and right eigenvalues of a split quaternion matrix is given. Finally, a method for finding right eigenvalues of a split quaternion matrix pencil is presented.
引用
收藏
页码:323 / 334
页数:11
相关论文
共 38 条
[11]  
Farid FO(2009)The roots of a split quaternion Appl. Math. Lett. 22 258-263
[12]  
Wang Q-W(2006)Rotations with unit timelike quaternions in Minkowski 3-space J. Geom. Physics 56 322-336
[13]  
Zhang F(2005)Algebraic tools for the study of quaternionic behavioral systems Linear Algebra Appl. 400 121-140
[14]  
Horn RA(2012)Stability of invariant subspaces of quaternion matrices Complex Anal. Oper. Theory 6 1069-1119
[15]  
Zhang F(2011)Augmented second-order statistics of quaternion random signals Signal Process. 91 214-224
[16]  
Junliang W(2008)Distribution and estimation for eigenvalues of real quaternion matrices Comput. Math. Appl. 55 1998-2004
[17]  
Limin Z(1997)Quaternions and matrices of quaternions Linear Algebra Appl. 251 21-57
[18]  
Xiangping C(2007)Geršgorin type theorems for quaternionic matrices Linear Algebra Appl. 424 139-155
[19]  
Shengjie L(2012)Location for the right eigenvalues of quaternion matrices J. Appl. Math. Comput. 38 71-83
[20]  
Kula L(undefined)undefined undefined undefined undefined-undefined