A note on quaternion matrices and split quaternion matrix pencils

被引:0
作者
Istkhar Ali
机构
[1] Indian Institute of Technology Indore,School of Basic Sciences, Discipline of Mathematics
来源
Journal of Applied Mathematics and Computing | 2018年 / 58卷
关键词
Quaternion matrix; Split quaternion matrix; Left and right eigenvalues; Gerschgorin theorems; 12E15; 34L15; 15A18; 15A66;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, localization theorems for left and right eigenvalues of a quaternion matrix are presented. Some differences between quaternion matrices and split quaternion matrices are summarized. A counter example for Gerschgorin theorems for left and right eigenvalues of a split quaternion matrix is given. Finally, a method for finding right eigenvalues of a split quaternion matrix pencil is presented.
引用
收藏
页码:323 / 334
页数:11
相关论文
共 38 条
[1]  
Ahmad SS(2016)Bounds for eigenvalues of matrix polynomials over quaternion division algebra Adv. Appl. Clifford Algebras 26 1095-1125
[2]  
Ali I(2012)Split quaternion matrices. Miskolc Math. Notes 13 223-232
[3]  
Alagöz Y(1989)A quaternion QR algorithm Numer. Math. 55 83-95
[4]  
Oral KH(2013)On eigenvalues of split quaternion matrices Adv. Appl. Clifford Algebras 23 615-623
[5]  
Yüce S(2011)On the eigenvalues of quaternion matrices Linear and Multilinear Algebra 59 451-473
[6]  
Bunse-Gerstner A(2012)A generalization of the complex Autonne–Takagi factorization to quaternion matrices Linear and Multilinear Algebra 60 1239-1244
[7]  
Byers R(2008)The estimation of eigenvalues of sum, difference, and tensor product of matrices over quaternion division algebra Linear Algebra Appl. 428 3023-3033
[8]  
Mehrmann V(2007)Split quaternions and rotations in semi euclidean space J. Korean Math. Soc. 44 1313-1327
[9]  
Erdoğdu M(1949)Eigenvalues and canonical forms of matrices with quaternion coefficients Proc. R. Irish Acad. Sect. 52A 253-260
[10]  
Özdemir M(1996)The matrix equation AXB-GXD =E over the quaternion field Linear Algebra Appl. 234 197-208