A specific slip length model for the Maxwell slip boundary conditions in the Navier–Stokes solution of flow around a microparticle in the no-slip and slip flow regimes

被引:0
|
作者
Jana Wedel
Mitja Štrakl
Jure Ravnik
Paul Steinmann
Matjaž Hriberšek
机构
[1] Friedrich-Alexander Universität Erlangen-Nürnberg,Institute of Applied Mechanics
[2] University of Maribor,Faculty of Mechanical Engineering
[3] University of Glasgow,Glasgow Computational Engineering Centre
来源
Theoretical and Computational Fluid Dynamics | 2022年 / 36卷
关键词
Slip flow regime; Drag force; Maxwell slip velocity; Tangential momentum accommodation coefficient; Slip length; Computational fluid dynamics;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:723 / 740
页数:17
相关论文
共 50 条
  • [1] A specific slip length model for the Maxwell slip boundary conditions in the Navier-Stokes solution of flow around a microparticle in the no-slip and slip flow regimes
    Wedel, Jana
    Strakl, Mitja
    Ravnik, Jure
    Steinmann, Paul
    Hribersek, Matjaz
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2022, 36 (05) : 723 - 740
  • [2] Influence of spanwise no-slip boundary conditions on the flow around a cylinder
    Strandenes, Hakon
    Pettersen, Bjornar
    Andersson, Helge I.
    Manhart, Michael
    COMPUTERS & FLUIDS, 2017, 156 : 48 - 57
  • [3] A Local Instability Mechanism of the Navier–Stokes Flow with Swirl on the No-Slip Flat Boundary
    Leandro Lichtenfelz
    Tsuyoshi Yoneda
    Journal of Mathematical Fluid Mechanics, 2019, 21
  • [4] NON-DARCY POROUS MEDIA FLOW IN NO-SLIP AND SLIP REGIMES
    Miguel, Antonio F.
    THERMAL SCIENCE, 2012, 16 (01): : 167 - 176
  • [5] Stokes flow with slip and Kuwabara boundary conditions
    Sunil Datta
    Satya Deo
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2002, 112 : 463 - 475
  • [6] Stokes flow with slip and Kuwabara boundary conditions
    Datta, S
    Deo, S
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2002, 112 (03): : 463 - 475
  • [7] ON NO-SLIP BOUNDARY-CONDITIONS FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    FOREMAN, MGG
    BENNETT, AF
    DYNAMICS OF ATMOSPHERES AND OCEANS, 1988, 12 (01) : 47 - 70
  • [8] A Local Instability Mechanism of the Navier-Stokes Flow with Swirl on the No-Slip Flat Boundary
    Lichtenfelz, Leandro
    Yoneda, Tsuyoshi
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2019, 21 (02)
  • [9] On the no-slip boundary conditions for squeeze flow of viscous fluids
    Fusi, Lorenzo
    Farina, Angiolo
    Rosso, Fabio
    MECHANICS RESEARCH COMMUNICATIONS, 2015, 70 : 1 - 3
  • [10] SLIP AND NO-SLIP SQUEEZING FLOW OF LIQUID FOOD IN A WEDGE
    CHEN, XD
    RHEOLOGICA ACTA, 1993, 32 (05) : 477 - 482