Sparse Recovery Using the Discrete Cosine Transform

被引:1
作者
Benjamin Barros
Brody Dylan Johnson
机构
[1] Saint Louis University,Department of Mathematics and Statistics
来源
The Journal of Geometric Analysis | 2021年 / 31卷
关键词
Sparse recovery; Discrete cosine transform; Compressive sensing; 94A12; 41A60; 42C15;
D O I
暂无
中图分类号
学科分类号
摘要
This note considers the problem of sparse recovery in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{n}$$\end{document} from linear measurements associated with a discrete cosine transform. The main theorem shows that an s-sparse vector in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{n}$$\end{document} can be recovered from the first 2s coefficients of its discrete cosine transform. This theorem is a real-valued analog of a result in Foucart and Rauhut (A mathematical introduction to compressive sensing, applied and numerical harmonic analysis, Birkhäuser/Springer, New York, 2013) concerned with sparse recovery in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^{n}$$\end{document} based on linear measurements via the discrete Fourier transform.
引用
收藏
页码:8991 / 8998
页数:7
相关论文
共 1 条
[1]  
Martucci S(1994)Symmetric convolution and the discrete sine and cosine transforms IEEE Trans. Signal Process. 42 1038-1051