Measurement of exclusive π+π-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{{{{\pi ^+\pi ^-}}}}}$$\end{document} and ρ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{{{{\rho ^0}}}}}$$\end{document} meson photoproduction at HERAH1 Collaboration

被引:0
|
作者
V. Andreev
A. Baghdasaryan
A. Baty
K. Begzsuren
A. Belousov
A. Bolz
V. Boudry
G. Brandt
D. Britzger
A. Buniatyan
L. Bystritskaya
A. J. Campbell
K. B. Cantun Avila
K. Cerny
V. Chekelian
Z. Chen
J. G. Contreras
J. Cvach
J. B. Dainton
K. Daum
A. Deshpande
C. Diaconu
G. Eckerlin
S. Egli
E. Elsen
L. Favart
A. Fedotov
J. Feltesse
M. Fleischer
A. Fomenko
C. Gal
J. Gayler
L. Goerlich
N. Gogitidze
M. Gouzevitch
C. Grab
A. Grebenyuk
T. Greenshaw
G. Grindhammer
D. Haidt
R. C. W. Henderson
J. Hladkỳ
D. Hoffmann
R. Horisberger
T. Hreus
F. Huber
M. Jacquet
X. Janssen
A. W. Jung
H. Jung
机构
[1] I. Physikalisches Institut der RWTH,School of Physics and Astronomy
[2] University of Birmingham,Inter
[3] Brussels and Universiteit Antwerpen,University Institute for High Energies ULB
[4] Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering (IFIN-HH),VUB
[5] STFC,Institut für Physik
[6] Rutherford Appleton Laboratory,Institut für Experimentalphysik
[7] Institute of Nuclear Physics Polish Academy of Sciences,Physikalisches Institut
[8] TU Dortmund,Department of Physics
[9] Joint Institute for Nuclear Research,Department of Physics
[10] Irfu/SPP,School of Physics and Astronomy
[11] CE Saclay,Departamento de Fisica Aplicada
[12] DESY,Faculty of Science
[13] Universität Hamburg,Institute of Physics
[14] Universität Heidelberg,Faculty of Mathematics and Physics
[15] University of Lancaster,Dipartimento di Fisica
[16] University of Liverpool,Fachbereich C
[17] Queen Mary University of London,Institut für Teilchenphysik
[18] Aix Marseille Université,II. Physikalisches Institut
[19] CNRS/IN2P3,Department of Physics and Astronomy
[20] CPPM UMR 7346,Department of Physics
[21] CINVESTAV Mérida,undefined
[22] Institute for Theoretical and Experimental Physics,undefined
[23] Lebedev Physical Institute,undefined
[24] Max-Planck-Institut für Physik,undefined
[25] LAL,undefined
[26] Université Paris-Sud,undefined
[27] CNRS/IN2P3,undefined
[28] LLR,undefined
[29] Ecole Polytechnique,undefined
[30] CNRS/IN2P3,undefined
[31] University of Montenegro,undefined
[32] Academy of Sciences of the Czech Republic,undefined
[33] Charles University,undefined
[34] Università di Roma Tre and INFN Roma 3,undefined
[35] Institute of Physics and Technology of the Mongolian Academy of Sciences,undefined
[36] Paul Scherrer Institut,undefined
[37] Universität Wuppertal,undefined
[38] Yerevan Physics Institute,undefined
[39] DESY,undefined
[40] ETH Zürich,undefined
[41] Physik-Institut der Universität Zürich,undefined
[42] Université Claude Bernard Lyon 1,undefined
[43] CNRS/IN2P3,undefined
[44] Skobeltsyn Institute of Nuclear Physics,undefined
[45] Lomonosov Moscow State University,undefined
[46] Joint Laboratory of Optics,undefined
[47] Palackỳ University,undefined
[48] CERN,undefined
[49] Ulaanbaatar University,undefined
[50] LAPP,undefined
来源
The European Physical Journal C | 2020年 / 80卷 / 12期
关键词
D O I
10.1140/epjc/s10052-020-08587-3
中图分类号
学科分类号
摘要
Exclusive photoproduction of ρ0(770)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rho ^0}} (770)$$\end{document} mesons is studied using the H1 detector at the ep collider HERA. A sample of about 900,000 events is used to measure single- and double-differential cross sections for the reaction γp→π+π-Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma p \rightarrow \pi ^{+}\pi ^{-}Y$$\end{document}. Reactions where the proton stays intact (mY=mp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{m_Y}} {=}m_p}$$\end{document}) are statistically separated from those where the proton dissociates to a low-mass hadronic system (mp<mY<10GeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_p{<}{{m_Y}} {<}10~{{\text {GeV}}} $$\end{document}). The double-differential cross sections are measured as a function of the invariant mass mππ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_{\pi \pi }$$\end{document} of the decay pions and the squared 4-momentum transfer t at the proton vertex. The measurements are presented in various bins of the photon–proton collision energy Wγp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{W_{\gamma p}}} $$\end{document}. The phase space restrictions are 0.5≤mππ≤2.2GeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.5\le m_{\pi \pi } \le 2.2~{{\text {GeV}}} $$\end{document}, |t|≤1.5GeV2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vert t\vert \le 1.5~{{\text {GeV}^2}} $$\end{document}, and 20≤Wγp≤80GeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$20 \le W_{\gamma p} \le 80~{{\text {GeV}}} $$\end{document}. Cross section measurements are presented for both elastic and proton-dissociative scattering. The observed cross section dependencies are described by analytic functions. Parametrising the mππ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${m_{\pi \pi }}$$\end{document} dependence with resonant and non-resonant contributions added at the amplitude level leads to a measurement of the ρ0(770)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rho ^0}} (770)$$\end{document} meson mass and width at mρ=770.8-2.7+2.6(tot.)MeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_\rho = 770.8{}^{+2.6}_{-2.7}~({\text {tot.}})~{{\text {MeV}}} $$\end{document} and Γρ=151.3-3.6+2.7(tot.)MeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _\rho = 151.3 {}^{+2.7}_{-3.6}~({\text {tot.}})~{{\text {MeV}}} $$\end{document}, respectively. The model is used to extract the ρ0(770)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rho ^0}} (770)$$\end{document} contribution to the π+π-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi ^{+}\pi ^{-}$$\end{document} cross sections and measure it as a function of t and Wγp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${W_{\gamma p}}$$\end{document}. In a Regge asymptotic limit in which one Regge trajectory α(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha (t)$$\end{document} dominates, the intercept α(t=0)=1.0654-0.0067+0.0098(tot.)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha (t{=}0) = 1.0654\ {}^{+0.0098}_{-0.0067}~({\text {tot.}})$$\end{document} and the slope α′(t=0)=0.233-0.074+0.067(tot.)GeV-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha ^\prime (t{=}0) = 0.233 {}^{+0.067 }_{-0.074 }~({\text {tot.}}) ~{{\text {GeV}^{-2}}} $$\end{document} of the t dependence are extracted for the case mY=mp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_Y{=}m_p$$\end{document}.
引用
收藏
相关论文
共 50 条