Complete hypersurfaces with constant scalar curvature in spheres

被引:0
|
作者
Aldir Brasil
A. Gervasio Colares
Oscar Palmas
机构
[1] Universidade Federal do Ceará,Departamento de Matemática
[2] UNAM,Departamento de Matemáticas, Facultad de Ciencias
来源
Monatshefte für Mathematik | 2010年 / 161卷
关键词
Scalar curvature; Rotation hypersurfaces; Product of spheres; 53C42; 53A10;
D O I
暂无
中图分类号
学科分类号
摘要
To a given immersion \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${i:M^n\to \mathbb S^{n+1}}$$\end{document} with constant scalar curvature R, we associate the supremum of the squared norm of the second fundamental form sup |A|2. We prove the existence of a constant Cn(R) depending on R and n so that R ≥ 1 and sup |A|2 = Cn(R) imply that the hypersurface is a H(r)-torus \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb S^1(\sqrt{1-r^2})\times\mathbb S^{n-1} (r)}$$\end{document}. For R > (n − 2)/n we use rotation hypersurfaces to show that for each value C > Cn(R) there is a complete hypersurface in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb S^{n+1}}$$\end{document} with constant scalar curvature R and sup |A|2 = C, answering questions raised by Q. M. Cheng.
引用
收藏
页码:369 / 380
页数:11
相关论文
共 50 条
  • [1] Complete hypersurfaces with constant scalar curvature in spheres
    Brasil, Aldir, Jr.
    Gervasio Colares, A.
    Palmas, Oscar
    MONATSHEFTE FUR MATHEMATIK, 2010, 161 (04): : 369 - 380
  • [2] SCALAR CURVATURE OF HYPERSURFACES WITH CONSTANT MEAN CURVATURE IN SPHERES
    Zhang, Qin
    GLASGOW MATHEMATICAL JOURNAL, 2012, 54 (01) : 67 - 75
  • [3] Stable hypersurfaces in spheres with constant scalar curvature
    Zhu, Peng
    Jin, Yadong
    ADVANCES IN GEOMETRY, 2016, 16 (02) : 199 - 204
  • [4] MINIMAL HYPERSURFACES OF SPHERES WITH CONSTANT SCALAR CURVATURE
    PENG, CK
    TERNG, CL
    ANNALS OF MATHEMATICS STUDIES, 1983, (103): : 177 - 198
  • [5] SCALAR CURVATURE OF HYPERSURFACES WITH CONSTANT MEAN CURVATURE IN UNIT SPHERES
    Chen, Gangyi
    Li, Haizhong
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2011, 22 (01) : 131 - 143
  • [6] COMPLETE SPACELIKE HYPERSURFACES WITH CONSTANT SCALAR CURVATURE
    Shu Shichang
    ARCHIVUM MATHEMATICUM, 2008, 44 (02): : 105 - 114
  • [7] Complete hypersurfaces with constant Mobius scalar curvature
    Li, Feng Jiang
    Fang, Jian Bo
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2016, 27 (08)
  • [8] Complete hypersurfaces with constant scalar curvature in a sphere
    Liu, Ximin
    Li, Hongxia
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2005, 46 (03): : 567 - 575
  • [9] The stability index of hypersurfaces with constant scalar curvature in spheres
    Cheng, Qing-Ming
    Li, Haizhong
    Wei, Guoxin
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2014, 144 (03) : 447 - 453
  • [10] On the Gauss map of hypersurfaces with constant scalar curvature in spheres
    Alencar, H
    Rosenberg, H
    Santos, W
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (12) : 3731 - 3739