Improved ridge regression estimators for the logistic regression model

被引:0
作者
A. K. Md. E. Saleh
B. M. Golam Kibria
机构
[1] Carleton University,School of Mathematics and Statistics
[2] Florida International University,Department of Mathematics and Statistics
来源
Computational Statistics | 2013年 / 28卷
关键词
Dominance; Efficiency; Pre-test; Risk function; Stein-rule estimator;
D O I
暂无
中图分类号
学科分类号
摘要
The estimation of the regression parameters for the ill-conditioned logistic regression model is considered in this paper. We proposed five ridge regression (RR) estimators, namely, unrestricted RR, restricted ridge regression, preliminary test RR, shrinkage ridge regression and positive rule RR estimators for estimating the parameters \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\beta )$$\end{document} when it is suspected that the parameter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} may belong to a linear subspace defined by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\beta =h$$\end{document}. Asymptotic properties of the estimators are studied with respect to quadratic risks. The performances of the proposed estimators are compared based on the quadratic bias and risk functions under both null and alternative hypotheses, which specify certain restrictions on the regression parameters. The conditions of superiority of the proposed estimators for departure and ridge parameters are given. Some graphical representations and efficiency analysis have been presented which support the findings of the paper.
引用
收藏
页码:2519 / 2558
页数:39
相关论文
共 65 条
  • [1] Arashi M(2009)Preliminary test estimation of the mean vector under balanced loss function J Stat Res 43 55-65
  • [2] Arashi M(2012)Preliminary test and Stein estimators in simultaneous linear equations Linear Algebra Appl 436 1195-1211
  • [3] Arashi M(2008)Stein-type improvement under stochastic constraints: use of multivariate student-t model in regression Stat Probab Lett 78 2142-2153
  • [4] Tabatabaey SMM(2009)Improved variance estimation under sub-space restriction J Multivar Anal 100 1752-1760
  • [5] Arashi M(2010)A note on Stein-type estimators in elliptically contoured models J Stat Plan Inference 140 1206-1213
  • [6] Tabatabaey SMM(2010)Estimation of the location parameter under LINEX loss function: multivariate case Metrika 72 51-57
  • [7] Arashi M(1944)On biases in estimation due touse of preliminary tests of significance Ann Math Stat 15 190-204
  • [8] Tabatabaey SMM(1964)Analysis and inference for incompletely specified models involving the use of preliminary test(s) of significance Biometrics 20 427-442
  • [9] Arashi M(1996)Pre-test estimation and design in the linear model J Stat Plan Inference 52 225-240
  • [10] Tabatabaey SMM(1992)Ridge estimators in logistic regression Appl Stat 41 191-201