On the behavior in time of solutions to motion of Non-Newtonian fluids

被引:0
作者
Gioconda Moscariello
Maria Michaela Porzio
机构
[1] Università degli Studi di Napoli “Federico II”,Dipartimento di Matematica e Applicazioni “R. Caccioppoli”
[2] Sapienza Università di Roma,Dipartimento di Matematica “G. Castelnuovo”
来源
Nonlinear Differential Equations and Applications NoDEA | 2020年 / 27卷
关键词
Decay estimates; Non-Newtonian fluids; Dirichlet boundary initial value problems; weak solutions; 76D03; 35Q35; 76D07;
D O I
暂无
中图分类号
学科分类号
摘要
We study the behavior on time of weak solutions to the non-stationary motion of an incompressible fluid with shear rate dependent viscosity in bounded domains when the initial velocity u0∈L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u}_0 {\in } {L}^2$$\end{document}. Our estimates show the different behavior of the solution as the growth condition of the stress tensor varies. In the “dilatant” or “shear thickening” case we prove that the decay rate does not depend on u0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_0$$\end{document}, then our estimates also apply for irregular initial velocity.
引用
收藏
相关论文
共 12 条
  • [1] Dong Bo-Qing(2006)Time decay rates of non-Newtonian flows in J. Math. Anal. Appl. 324 820-833
  • [2] Chen Zhi-Min(2018)A nonlinear parabolic equation with drift term Nonlinear Anal. TMA 177 397-412
  • [3] Farroni F(2017)Quantitative asymptotic estimates for evolution problems Nonlinear Anal. TMA 154 225-240
  • [4] Moscariello G(2009)On decay estimates J. Evol. Equ. 9 561-591
  • [5] Moscariello G(2011)Existence, uniqueness and behavior of solutions for a class of nonlinear parabolic problems Nonlinear Anal. TMA 74 5359-5382
  • [6] Porzio MM(2015)On uniform and decay estimates for unbounded solutions of partial differential equations J. Differ. Equ. 259 6960-7011
  • [7] Porzio MM(2018)Regularity and time behavior of the solutions of linear and quasilinear parabolic equations Adv. Differ. Equ. 23 329-372
  • [8] Porzio MM(1985) decay for weak solutions of the Navier–Stokes equations Arch. Ration. Mech. Anal. 88 209-222
  • [9] Porzio MM(2007)Existence of weak solutions to the equations of non-stationary motion of non-Newtonian fluids with shear rate dependent viscosity J. Math. Fluid Mech. 9 104-138
  • [10] Porzio MM(undefined)undefined undefined undefined undefined-undefined